A Deep Learning Approach for Facial Attribute Manipulation and Reconstruction in Surveillance and Reconnaissance
- URL: http://arxiv.org/abs/2506.06578v1
- Date: Fri, 06 Jun 2025 23:09:17 GMT
- Title: A Deep Learning Approach for Facial Attribute Manipulation and Reconstruction in Surveillance and Reconnaissance
- Authors: Anees Nashath Shaik, Barbara Villarini, Vasileios Argyriou,
- Abstract summary: Surveillance systems play a critical role in security and reconnaissance, but their performance is often compromised by low-quality images and videos.<n>Existing AI-based facial analysis models suffer from biases related to skin tone variations and partially occluded faces.<n>We propose a data-driven platform that enhances surveillance capabilities by generating synthetic training data tailored to compensate for dataset biases.
- Score: 5.980822697955566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surveillance systems play a critical role in security and reconnaissance, but their performance is often compromised by low-quality images and videos, leading to reduced accuracy in face recognition. Additionally, existing AI-based facial analysis models suffer from biases related to skin tone variations and partially occluded faces, further limiting their effectiveness in diverse real-world scenarios. These challenges are the results of data limitations and imbalances, where available training datasets lack sufficient diversity, resulting in unfair and unreliable facial recognition performance. To address these issues, we propose a data-driven platform that enhances surveillance capabilities by generating synthetic training data tailored to compensate for dataset biases. Our approach leverages deep learning-based facial attribute manipulation and reconstruction using autoencoders and Generative Adversarial Networks (GANs) to create diverse and high-quality facial datasets. Additionally, our system integrates an image enhancement module, improving the clarity of low-resolution or occluded faces in surveillance footage. We evaluate our approach using the CelebA dataset, demonstrating that the proposed platform enhances both training data diversity and model fairness. This work contributes to reducing bias in AI-based facial analysis and improving surveillance accuracy in challenging environments, leading to fairer and more reliable security applications.
Related papers
- Privacy-Preserving Driver Drowsiness Detection with Spatial Self-Attention and Federated Learning [10.067641629547014]
Driver drowsiness is one of the main causes of road accidents and is recognized as a leading contributor to traffic-related fatalities.<n>We propose a novel framework for drowsiness detection that is designed to work effectively with heterogeneous and decentralized data.
arXiv Detail & Related papers (2025-08-01T03:12:01Z) - Fairer Analysis and Demographically Balanced Face Generation for Fairer Face Verification [69.04239222633795]
Face recognition and verification are two computer vision tasks whose performances have advanced with the introduction of deep representations.<n>Ethical, legal, and technical challenges due to the sensitive nature of face data and biases in real-world training datasets hinder their development.<n>We introduce a new controlled generation pipeline that improves fairness.
arXiv Detail & Related papers (2024-12-04T14:30:19Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Toward Fairer Face Recognition Datasets [69.04239222633795]
Face recognition and verification are computer vision tasks whose performance has progressed with the introduction of deep representations.
Ethical, legal, and technical challenges due to the sensitive character of face data and biases in real training datasets hinder their development.
We promote fairness by introducing a demographic attributes balancing mechanism in generated training datasets.
arXiv Detail & Related papers (2024-06-24T12:33:21Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
We investigate the utility of synthetic datasets for training complex multi-task models that recognize facial attributes of passengers of a vehicle.
Our study unveils counter-intuitive findings, notably the superior performance of ResNet over ViTs in our specific multi-task context.
arXiv Detail & Related papers (2024-03-10T04:17:54Z) - Face Recognition Using Synthetic Face Data [0.0]
We highlight the promising application of synthetic data, generated through rendering digital faces via our computer graphics pipeline, in achieving competitive results.
By finetuning the model,we obtain results that rival those achieved when training with hundreds of thousands of real images.
We also investigate the contribution of adding intra-class variance factors (e.g., makeup, accessories, haircuts) on model performance.
arXiv Detail & Related papers (2023-05-17T09:26:10Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Robust Attentive Deep Neural Network for Exposing GAN-generated Faces [40.15016121723183]
We propose a robust, attentive, end-to-end network that can spot GAN-generated faces by analyzing their eye inconsistencies.
Our deep network addresses the imbalance learning issues by considering the AUC loss and the traditional cross-entropy loss jointly.
arXiv Detail & Related papers (2021-09-05T21:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.