Privacy-Preserving Driver Drowsiness Detection with Spatial Self-Attention and Federated Learning
- URL: http://arxiv.org/abs/2508.00287v1
- Date: Fri, 01 Aug 2025 03:12:01 GMT
- Title: Privacy-Preserving Driver Drowsiness Detection with Spatial Self-Attention and Federated Learning
- Authors: Tran Viet Khoa, Do Hai Son, Mohammad Abu Alsheikh, Yibeltal F Alem, Dinh Thai Hoang,
- Abstract summary: Driver drowsiness is one of the main causes of road accidents and is recognized as a leading contributor to traffic-related fatalities.<n>We propose a novel framework for drowsiness detection that is designed to work effectively with heterogeneous and decentralized data.
- Score: 10.067641629547014
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Driver drowsiness is one of the main causes of road accidents and is recognized as a leading contributor to traffic-related fatalities. However, detecting drowsiness accurately remains a challenging task, especially in real-world settings where facial data from different individuals is decentralized and highly diverse. In this paper, we propose a novel framework for drowsiness detection that is designed to work effectively with heterogeneous and decentralized data. Our approach develops a new Spatial Self-Attention (SSA) mechanism integrated with a Long Short-Term Memory (LSTM) network to better extract key facial features and improve detection performance. To support federated learning, we employ a Gradient Similarity Comparison (GSC) that selects the most relevant trained models from different operators before aggregation. This improves the accuracy and robustness of the global model while preserving user privacy. We also develop a customized tool that automatically processes video data by extracting frames, detecting and cropping faces, and applying data augmentation techniques such as rotation, flipping, brightness adjustment, and zooming. Experimental results show that our framework achieves a detection accuracy of 89.9% in the federated learning settings, outperforming existing methods under various deployment scenarios. The results demonstrate the effectiveness of our approach in handling real-world data variability and highlight its potential for deployment in intelligent transportation systems to enhance road safety through early and reliable drowsiness detection.
Related papers
- A Deep Learning Approach for Facial Attribute Manipulation and Reconstruction in Surveillance and Reconnaissance [5.980822697955566]
Surveillance systems play a critical role in security and reconnaissance, but their performance is often compromised by low-quality images and videos.<n>Existing AI-based facial analysis models suffer from biases related to skin tone variations and partially occluded faces.<n>We propose a data-driven platform that enhances surveillance capabilities by generating synthetic training data tailored to compensate for dataset biases.
arXiv Detail & Related papers (2025-06-06T23:09:17Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
We propose a unified backdoor detection framework in the semi-honest setting.<n>Our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines.<n> Notably, it is the first to effectively detect backdoors in multimodal large language models.
arXiv Detail & Related papers (2025-03-21T06:12:06Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions.<n>The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training.<n>Results indicate significant performance improvements across all settings.
arXiv Detail & Related papers (2024-07-03T07:19:41Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
Hierarchical Federated Learning (HFL) faces the challenge of adversarial or unreliable vehicles in vehicular networks.
Our study introduces a novel framework that integrates dynamic vehicle selection and robust anomaly detection mechanisms.
Our proposed algorithm demonstrates remarkable resilience even under intense attack conditions.
arXiv Detail & Related papers (2024-05-25T18:31:20Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.