RARL: Improving Medical VLM Reasoning and Generalization with Reinforcement Learning and LoRA under Data and Hardware Constraints
- URL: http://arxiv.org/abs/2506.06600v2
- Date: Sat, 14 Jun 2025 19:41:30 GMT
- Title: RARL: Improving Medical VLM Reasoning and Generalization with Reinforcement Learning and LoRA under Data and Hardware Constraints
- Authors: Tan-Hanh Pham, Chris Ngo,
- Abstract summary: Reasoning-Aware Reinforcement Learning framework enhances the reasoning capabilities of medical vision-language models.<n>Our approach fine-tunes a lightweight base model, Qwen2-VL-2B-Instruct, using Low-Rank Adaptation and custom reward functions.<n> Experimental results show RARL significantly improves VLM performance in medical image analysis and clinical reasoning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing integration of vision-language models (VLMs) in medical applications offers promising support for diagnostic reasoning. However, current medical VLMs often face limitations in generalization, transparency, and computational efficiency-barriers that hinder deployment in real-world, resource-constrained settings. To address these challenges, we propose a Reasoning-Aware Reinforcement Learning framework, \textbf{RARL}, that enhances the reasoning capabilities of medical VLMs while remaining efficient and adaptable to low-resource environments. Our approach fine-tunes a lightweight base model, Qwen2-VL-2B-Instruct, using Low-Rank Adaptation and custom reward functions that jointly consider diagnostic accuracy and reasoning quality. Training is performed on a single NVIDIA A100-PCIE-40GB GPU, demonstrating the feasibility of deploying such models in constrained environments. We evaluate the model using an LLM-as-judge framework that scores both correctness and explanation quality. Experimental results show that RARL significantly improves VLM performance in medical image analysis and clinical reasoning, outperforming supervised fine-tuning on reasoning-focused tasks by approximately 7.78%, while requiring fewer computational resources. Additionally, we demonstrate the generalization capabilities of our approach on unseen datasets, achieving around 27% improved performance compared to supervised fine-tuning and about 4% over traditional RL fine-tuning. Our experiments also illustrate that diversity prompting during training and reasoning prompting during inference are crucial for enhancing VLM performance. Our findings highlight the potential of reasoning-guided learning and reasoning prompting to steer medical VLMs toward more transparent, accurate, and resource-efficient clinical decision-making. Code and data are publicly available.
Related papers
- Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning.<n>We propose an expert-in-the-loop framework named Expert-Controlled-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training.
arXiv Detail & Related papers (2025-07-12T09:03:30Z) - Efficient Medical VIE via Reinforcement Learning [10.713109515157475]
Visual Information Extraction (VIE) converts unstructured document images into structured formats like, structured formats like, critical for medical applications like report analysis and online consultations.<n>Traditional methods rely on OCR and language models, while end-to-end multimodal models offer direct generation.<n>We base our approach on the Reinforcement Learning with Verifiable Rewards (RLVR) framework to address these challenges using only 100 annotated samples.
arXiv Detail & Related papers (2025-06-16T11:10:25Z) - CAPO: Reinforcing Consistent Reasoning in Medical Decision-Making [42.28216499263317]
We introduce Med-Zero-17K, a curated dataset for pure RL-based training, encompassing over 30 medical image modalities and 24 clinical tasks.<n>We propose a novel large-scale RL framework for Med-VLMs, which integrates rewards to ensure fidelity between perception and reasoning, consistency in reasoning-to-answer, and rule-based accuracy for final responses.
arXiv Detail & Related papers (2025-06-15T13:42:46Z) - Training LLMs for EHR-Based Reasoning Tasks via Reinforcement Learning [28.019558492081437]
We present a practical recipe for adapting large language models (LLMs) to complex clinical reasoning tasks using reinforcement learning with verifiable rewards (RLVR)<n>We demonstrate the effectiveness of our method across diverse clinical applications, including medical calculations (MEDCALC), patient-trial matching (TREC CLINICAL TRIALS), and disease diagnosis (EHRSHOT)
arXiv Detail & Related papers (2025-05-30T01:13:22Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - MedVLM-R1: Incentivizing Medical Reasoning Capability of Vision-Language Models (VLMs) via Reinforcement Learning [29.84956540178252]
Reasoning is a critical frontier for advancing medical image analysis.<n>We introduce MedVLM-R1, a medical VLM that explicitly generates natural language reasoning.<n>MedVLM-R1 boosts accuracy from 55.11% to 78.22% across MRI, CT, and X-ray benchmarks.
arXiv Detail & Related papers (2025-02-26T23:57:34Z) - VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models [66.56298924208319]
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems.<n>Current assessment methods primarily rely on AI-annotated preference labels from traditional tasks.<n>We introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks.
arXiv Detail & Related papers (2024-11-26T14:08:34Z) - LEAF: Learning and Evaluation Augmented by Fact-Checking to Improve Factualness in Large Language Models [11.453585039783901]
LEAF: Learning and Evaluation Augmented by Fact-Checking, is a novel approach designed to enhance the factual reliability of large language models (LLMs)
The first strategy, Fact-Check-Then-RAG, improves Retrieval-Augmented Generation (RAG) by incorporating fact-checking results to guide the retrieval process without updating model parameters.
The second strategy, Learning from Fact-Checks via Self-Training, involves supervised fine-tuning (SFT) on fact-checked responses or applying Simple Preference Optimization (SimPO) with fact-checking as a ranking mechanism.
arXiv Detail & Related papers (2024-10-31T00:18:05Z) - Knowledge-grounded Adaptation Strategy for Vision-language Models: Building Unique Case-set for Screening Mammograms for Residents Training [5.819704618007536]
A visual-language model (VLM) pre-trained on natural images and text pairs poses a significant barrier when applied to medical contexts.
We propose a framework designed to adeptly tailor VLMs to the medical domain, employing selective sampling and hard-negative mining techniques.
arXiv Detail & Related papers (2024-05-30T04:04:36Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
We introduce a knowledge-guided in-context learning framework to enable large language models to process structured clinical data.<n>Our approach integrates domain-specific feature groupings, carefully balanced few-shot examples, and task-specific prompting strategies.
arXiv Detail & Related papers (2024-05-10T06:52:44Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.