PhysLab: A Benchmark Dataset for Multi-Granularity Visual Parsing of Physics Experiments
- URL: http://arxiv.org/abs/2506.06631v1
- Date: Sat, 07 Jun 2025 02:28:24 GMT
- Title: PhysLab: A Benchmark Dataset for Multi-Granularity Visual Parsing of Physics Experiments
- Authors: Minghao Zou, Qingtian Zeng, Yongping Miao, Shangkun Liu, Zilong Wang, Hantao Liu, Wei Zhou,
- Abstract summary: We introduce PhysLab, the first video dataset that captures students conducting complex physics experiments.<n>The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns.<n>PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks.
- Score: 16.800647681719045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.
Related papers
- Pixels to Principles: Probing Intuitive Physics Understanding in Multimodal Language Models [5.134872455507186]
This paper presents a systematic evaluation of state-of-the-art multimodal large language models (MLLMs) on intuitive physics tasks.<n>We assess the open-source models InternVL 2.5, Qwen 2.5 VL, LLaVA-OneVision, and the proprietary Gemini 2.0 Flash Thinking.<n>We find that even the latest models struggle to reliably distinguish physically plausible from implausible scenarios.
arXiv Detail & Related papers (2025-07-22T13:24:42Z) - PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis [62.283499219361595]
PhysGaia is a physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS)<n>Our dataset provides complex dynamic scenarios with rich interactions among multiple objects.<n>PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation.
arXiv Detail & Related papers (2025-06-03T12:19:18Z) - SeePhys: Does Seeing Help Thinking? -- Benchmarking Vision-Based Physics Reasoning [89.48883747910448]
We present SeePhys, a large-scale multimodal benchmark for reasoning grounded in physics questions.<n>The benchmark covers 7 fundamental domains spanning the physics discipline, incorporating 21 categories of highly heterogeneous diagrams.<n>We observe that even the most advanced visual reasoning models (e.g., Gemini-2.5-pro and o4-mini) achieve sub-60% accuracy on our benchmark.
arXiv Detail & Related papers (2025-05-25T11:28:34Z) - The Sound of Water: Inferring Physical Properties from Pouring Liquids [85.30865788636386]
We study the connection between audio-visual observations and the underlying physics of pouring liquids.<n>Our objective is to automatically infer physical properties such as the liquid level, the shape and size of the container, the pouring rate and the time to fill.
arXiv Detail & Related papers (2024-11-18T01:19:37Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
We present a comprehensive dataset compiled from Nature Communications articles covering 72 scientific fields.<n>We evaluated 19 proprietary and open-source models on two benchmark tasks, figure captioning and multiple-choice, and conducted human expert annotation.<n>Fine-tuning Qwen2-VL-7B with our task-specific data achieved better performance than GPT-4o and even human experts in multiple-choice evaluations.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Augmented Physics: Creating Interactive and Embedded Physics Simulations from Static Textbook Diagrams [10.883862721068223]
We introduce Augmented Physics, a machine learning-integrated authoring tool designed for creating embedded interactive physics simulations from static textbook diagrams.
Our system enables users to semi-automatically extract diagrams from physics textbooks and generate interactive simulations based on the extracted content.
arXiv Detail & Related papers (2024-05-28T21:45:20Z) - TPA-Net: Generate A Dataset for Text to Physics-based Animation [27.544423833402572]
We present an autonomous data generation technique and a dataset, which intend to narrow the gap with a large number of multi-modal, 3D Text-to-Video/Simulation (T2V/S) data.
We take advantage of state-of-the-art physical simulation methods to simulate diverse scenarios, including elastic deformations, material fractures, collisions, turbulence, etc.
High-quality, multi-view rendering videos are supplied for the benefit of T2V, Neural Radiance Fields (NeRF), and other communities.
arXiv Detail & Related papers (2022-11-25T04:26:41Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
We test the capabilities of machine learning models in multimodal understanding of educational content.
Our dataset contains aligned slides and spoken language, for 180+ hours of video and 9000+ slides, with 10 lecturers from various subjects.
We introduce PolyViLT, a multimodal transformer trained with a multi-instance learning loss that is more effective than current approaches.
arXiv Detail & Related papers (2022-08-17T05:30:18Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.