Pixels to Principles: Probing Intuitive Physics Understanding in Multimodal Language Models
- URL: http://arxiv.org/abs/2507.16572v1
- Date: Tue, 22 Jul 2025 13:24:42 GMT
- Title: Pixels to Principles: Probing Intuitive Physics Understanding in Multimodal Language Models
- Authors: Mohamad Ballout, Serwan Jassim, Elia Bruni,
- Abstract summary: This paper presents a systematic evaluation of state-of-the-art multimodal large language models (MLLMs) on intuitive physics tasks.<n>We assess the open-source models InternVL 2.5, Qwen 2.5 VL, LLaVA-OneVision, and the proprietary Gemini 2.0 Flash Thinking.<n>We find that even the latest models struggle to reliably distinguish physically plausible from implausible scenarios.
- Score: 5.134872455507186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a systematic evaluation of state-of-the-art multimodal large language models (MLLMs) on intuitive physics tasks using the GRASP and IntPhys 2 datasets. We assess the open-source models InternVL 2.5, Qwen 2.5 VL, LLaVA-OneVision, and the proprietary Gemini 2.0 Flash Thinking, finding that even the latest models struggle to reliably distinguish physically plausible from implausible scenarios. To go beyond performance metrics, we conduct a probing analysis of model embeddings, extracting intermediate representations at key processing stages to examine how well task-relevant information is preserved. Our results show that, depending on task difficulty, a critical vision-language misalignment can emerge: vision encoders successfully capture physical plausibility cues, but this information is not effectively utilized by the language model, leading to failures in reasoning. This misalignment suggests that the primary limitation of MLLMs in intuitive physics tasks is not the vision component but the ineffective integration of visual and linguistic information. Our findings highlight vision-language alignment as a key area for improvement, offering insights for future MLLMs development.
Related papers
- Response Wide Shut? Surprising Observations in Basic Vision Language Model Capabilities [54.94982467313341]
Vision-language Models (VLMs) have emerged as general-purpose tools for addressing a variety of complex computer vision problems.<n>We set out to understand the limitations of SoTA VLMs on fundamental visual tasks by constructing a series of tests that probe which components of design, specifically, may be lacking.
arXiv Detail & Related papers (2025-07-10T15:26:41Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Physics Context Builders: A Modular Framework for Physical Reasoning in Vision-Language Models [9.474337395173388]
Physical reasoning remains a significant challenge for Vision-Language Models (VLMs)<n>Fine-tuning is expensive for large models and impractical to repeatedly perform for every task.<n>We introduce Physics Context Builders (PCBs), a novel modular framework where specialized VLMs are fine-tuned to generate detailed physical scene descriptions.
arXiv Detail & Related papers (2024-12-11T18:40:16Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - GRASP: A novel benchmark for evaluating language GRounding And Situated Physics understanding in multimodal language models [4.354672867211922]
This paper presents GRASP, a novel benchmark to evaluate the language grounding and physical understanding capabilities of video-based multimodal large language models (LLMs)
We use it to evaluate several state-of-the-art multimodal LLMs.
Our evaluation reveals significant shortcomings in the language grounding and intuitive physics capabilities of these models.
arXiv Detail & Related papers (2023-11-15T15:38:28Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks.
In contrast to previous models, UViM has the same functional form for all tasks.
We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks.
arXiv Detail & Related papers (2022-05-20T17:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.