Dark Channel-Assisted Depth-from-Defocus from a Single Image
- URL: http://arxiv.org/abs/2506.06643v2
- Date: Wed, 25 Jun 2025 16:28:35 GMT
- Title: Dark Channel-Assisted Depth-from-Defocus from a Single Image
- Authors: Moushumi Medhi, Rajiv Ranjan Sahay,
- Abstract summary: We estimate scene depth from a single defocus-blurred image using the dark channel as a complementary cue.<n>Our method uses the relationship between local defocus blur and contrast variations as depth cues to improve scene structure estimation.
- Score: 4.005483185111993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We estimate scene depth from a single defocus-blurred image using the dark channel as a complementary cue, leveraging its ability to capture local statistics and scene structure. Traditional depth-from-defocus (DFD) methods use multiple images with varying apertures or focus. Single-image DFD is underexplored due to its inherent challenges. Few attempts have focused on depth-from-defocus (DFD) from a single defocused image because the problem is underconstrained. Our method uses the relationship between local defocus blur and contrast variations as depth cues to improve scene structure estimation. The pipeline is trained end-to-end with adversarial learning. Experiments on real data demonstrate that incorporating the dark channel prior into single-image DFD provides meaningful depth estimation, validating our approach.
Related papers
- BokehDiff: Neural Lens Blur with One-Step Diffusion [53.11429878683807]
We introduce BokehDiff, a lens blur rendering method that achieves physically accurate and visually appealing outcomes.<n>Our method employs a physics-inspired self-attention module that aligns with the image formation process.<n>We adapt the diffusion model to the one-step inference scheme without introducing additional noise, and achieve results of high quality and fidelity.
arXiv Detail & Related papers (2025-07-24T03:23:19Z) - Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion [51.69876947593144]
Existing methods for depth completion operate in tightly constrained settings.<n>Inspired by advances in monocular depth estimation, we reframe depth completion as an image-conditional depth map generation.<n>Marigold-DC builds on a pretrained latent diffusion model for monocular depth estimation and injects the depth observations as test-time guidance.
arXiv Detail & Related papers (2024-12-18T00:06:41Z) - Unveiling the Depths: A Multi-Modal Fusion Framework for Challenging
Scenarios [103.72094710263656]
This paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework.
We propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas.
With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner.
arXiv Detail & Related papers (2024-02-19T04:39:16Z) - Blur aware metric depth estimation with multi-focus plenoptic cameras [8.508198765617196]
We present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera.
The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used.
arXiv Detail & Related papers (2023-08-08T13:38:50Z) - Depth and DOF Cues Make A Better Defocus Blur Detector [27.33757097343283]
Defocus blur detection (DBD) separates in-focus and out-of-focus regions in an image.
Previous approaches mistakenly mistook homogeneous areas in focus for defocus blur regions.
We propose an approach called D-DFFNet, which incorporates depth and DOF cues in an implicit manner.
arXiv Detail & Related papers (2023-06-20T07:03:37Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
We propose a self-supervised framework that estimates depth purely from a sparse focal stack.
We show that our framework circumvents the needs for the depth and AIF image ground-truth, and receives superior predictions.
arXiv Detail & Related papers (2023-03-19T19:59:48Z) - Deep Depth from Focal Stack with Defocus Model for Camera-Setting
Invariance [19.460887007137607]
We propose a learning-based depth from focus/defocus (DFF) which takes a focal stack as input for estimating scene depth.
We show that our method is robust against a synthetic-to-real domain gap, and exhibits state-of-the-art performance.
arXiv Detail & Related papers (2022-02-26T04:21:08Z) - Deep Depth from Focus with Differential Focus Volume [17.505649653615123]
We propose a convolutional neural network (CNN) to find the best-focused pixels in a focal stack and infer depth from the focus estimation.
The key innovation of the network is the novel deep differential focus volume (DFV)
arXiv Detail & Related papers (2021-12-03T04:49:51Z) - Bridging Unsupervised and Supervised Depth from Focus via All-in-Focus
Supervision [10.547816678110417]
The proposed method can be trained either supervisedly with ground truth depth, or emphunsupervisedly with AiF images as supervisory signals.
We show in various experiments that our method outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-24T17:09:13Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
We introduce depth information into DBD for the first time.
In detail, we learn the defocus blur from ground truth and the depth distilled from a well-trained depth estimation network.
Our approach outperforms 11 other state-of-the-art methods on two popular datasets.
arXiv Detail & Related papers (2020-07-16T04:58:09Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.