AI PsyRoom: Artificial Intelligence Platform for Segmented Yearning and Reactive Outcome Optimization Method
- URL: http://arxiv.org/abs/2506.06740v2
- Date: Fri, 25 Jul 2025 11:08:54 GMT
- Title: AI PsyRoom: Artificial Intelligence Platform for Segmented Yearning and Reactive Outcome Optimization Method
- Authors: Yigui Feng, Qinglin Wang, Ke Liu, Xinhai Chen, Bo Yang, Jie Liu,
- Abstract summary: Psychological counseling faces huge challenges due to the growing demand for mental health services and the shortage of trained professionals.<n>Large language models (LLMs) have shown potential to assist psychological counseling, especially in empathy and emotional support.<n>We present AI PsyRoom, a multi-agent simulation framework designed to enhance psychological counseling by generating empathetic and emotionally nuanced conversations.
- Score: 8.268828460773028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Psychological counseling faces huge challenges due to the growing demand for mental health services and the shortage of trained professionals. Large language models (LLMs) have shown potential to assist psychological counseling, especially in empathy and emotional support. However, existing models lack a deep understanding of emotions and are unable to generate personalized treatment plans based on fine-grained emotions. To address these shortcomings, we present AI PsyRoom, a multi-agent simulation framework designed to enhance psychological counseling by generating empathetic and emotionally nuanced conversations. By leveraging fine-grained emotion classification and a multi-agent framework, we construct a multi-agent PsyRoom A for dialogue reconstruction, generating a high-quality dialogue dataset EmoPsy, which contains 35 sub-emotions, 423 specific emotion scenarios, and 12,350 dialogues. We also propose PsyRoom B for generating personalized treatment plans. Quantitative evaluations demonstrate that AI PsyRoom significantly outperforms state-of-the-art methods, achieving 18% improvement in problem orientation, 23% in expression, 24% in Empathy, and 16% in interactive communication quality. The datasets and models are publicly available, providing a foundation for advancing AI-assisted psychological counseling research.
Related papers
- Are You Listening to Me? Fine-Tuning Chatbots for Empathetic Dialogue [0.5849783371898033]
We explore how Large Language Models (LLMs) respond when tasked with generating emotionally rich interactions.<n>We analyzed the emotional progression of the dialogues using both sentiment analysis (via VADER) and expert assessments.
arXiv Detail & Related papers (2025-07-03T11:32:41Z) - Sentient Agent as a Judge: Evaluating Higher-Order Social Cognition in Large Language Models [75.85319609088354]
Sentient Agent as a Judge (SAGE) is an evaluation framework for large language models.<n>SAGE instantiates a Sentient Agent that simulates human-like emotional changes and inner thoughts during interaction.<n>SAGE provides a principled, scalable and interpretable tool for tracking progress toward genuinely empathetic and socially adept language agents.
arXiv Detail & Related papers (2025-05-01T19:06:10Z) - PsyCounAssist: A Full-Cycle AI-Powered Psychological Counseling Assistant System [6.868956036918275]
PsyCounAssist is a comprehensive AI-powered counseling system specifically designed to augment psychological counseling practices.<n>It integrates multimodal emotion recognition, automated structured session reporting, and personalized AI-generated follow-up support.<n> Deployed on Android-based tablet devices, the system demonstrates practical applicability and flexibility in real-world counseling scenarios.
arXiv Detail & Related papers (2025-04-23T09:49:05Z) - DeepPsy-Agent: A Stage-Aware and Deep-Thinking Emotional Support Agent System [10.262822400879688]
DeepPsy-Agent is an innovative psychological support system that combines the three-stage helping theory in psychology with deep learning techniques.<n>Based on 30,000 real psychological hotline conversations, we employ AI-simulated dialogues and expert re-annotation strategies to construct a high-quality multi-turn dialogue dataset.
arXiv Detail & Related papers (2025-03-20T05:59:29Z) - From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations [19.67703146838264]
Large Language Models (LLMs) have revolutionized the generation of emotional support conversations.<n>This paper explores the role of personas in the creation of emotional support conversations.
arXiv Detail & Related papers (2025-02-17T05:24:30Z) - AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues.<n>Online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame.
arXiv Detail & Related papers (2025-01-16T09:57:12Z) - The Emotional Spectrum of LLMs: Leveraging Empathy and Emotion-Based Markers for Mental Health Support [41.463376100442396]
RACLETTE is a conversational system that demonstrates superior emotional accuracy compared to state-of-the-art benchmarks.<n>We show how the emotional profiles of a user can be used as interpretable markers for mental health assessment.
arXiv Detail & Related papers (2024-12-28T07:42:29Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset
for Conversational AI [48.67259855309959]
Most existing datasets for conversational AI ignore human personalities and emotions.
We propose CPED, a large-scale Chinese personalized and emotional dialogue dataset.
CPED contains more than 12K dialogues of 392 speakers from 40 TV shows.
arXiv Detail & Related papers (2022-05-29T17:45:12Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.