Building Emotional Support Chatbots in the Era of LLMs
- URL: http://arxiv.org/abs/2308.11584v1
- Date: Thu, 17 Aug 2023 10:49:18 GMT
- Title: Building Emotional Support Chatbots in the Era of LLMs
- Authors: Zhonghua Zheng, Lizi Liao, Yang Deng, Liqiang Nie
- Abstract summary: We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
- Score: 64.06811786616471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of emotional support into various conversational scenarios
presents profound societal benefits, such as social interactions, mental health
counseling, and customer service. However, there are unsolved challenges that
hinder real-world applications in this field, including limited data
availability and the absence of well-accepted model training paradigms. This
work endeavors to navigate these challenges by harnessing the capabilities of
Large Language Models (LLMs). We introduce an innovative methodology that
synthesizes human insights with the computational prowess of LLMs to curate an
extensive emotional support dialogue dataset. Our approach is initiated with a
meticulously designed set of dialogues spanning diverse scenarios as generative
seeds. By utilizing the in-context learning potential of ChatGPT, we
recursively generate an ExTensible Emotional Support dialogue dataset, named
ExTES. Following this, we deploy advanced tuning techniques on the LLaMA model,
examining the impact of diverse training strategies, ultimately yielding an LLM
meticulously optimized for emotional support interactions. An exhaustive
assessment of the resultant model showcases its proficiency in offering
emotional support, marking a pivotal step in the realm of emotional support
bots and paving the way for subsequent research and implementations.
Related papers
- From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations [19.67703146838264]
Large Language Models (LLMs) have revolutionized the generation of emotional support conversations.
This paper explores the role of personas in the creation of emotional support conversations.
arXiv Detail & Related papers (2025-02-17T05:24:30Z) - Unlocking LLMs: Addressing Scarce Data and Bias Challenges in Mental Health [8.703482957316107]
Large language models (LLMs) have shown promising capabilities in healthcare analysis but face several challenges like hallucinations, parroting, and bias manifestation.
In this work we introduce IC-AnnoMI, an expert-annotated motivational interviewing (MI) dataset built upon AnnoMI.
IC-AnnoMI employs targeted prompts accurately engineered through cues and tailored information, taking into account therapy style (empathy, reflection), contextual relevance, and false semantic change.
arXiv Detail & Related papers (2024-12-17T15:01:07Z) - SweetieChat: A Strategy-Enhanced Role-playing Framework for Diverse Scenarios Handling Emotional Support Agent [27.301608019492043]
Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions.
We propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations.
Within this framework, we develop the textbfServeForEmo dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances.
arXiv Detail & Related papers (2024-12-11T13:56:04Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Empathy Through Multimodality in Conversational Interfaces [1.360649555639909]
Conversational Health Agents (CHAs) are redefining healthcare by offering nuanced support that transcends textual analysis to incorporate emotional intelligence.
This paper introduces an LLM-based CHA engineered for rich, multimodal dialogue-especially in the realm of mental health support.
It adeptly interprets and responds to users' emotional states by analyzing multimodal cues, thus delivering contextually aware and empathetically resonant verbal responses.
arXiv Detail & Related papers (2024-05-08T02:48:29Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks.
We propose the Emotional Chain-of-Thought (ECoT) to enhance the performance of LLMs on various emotional generation tasks.
arXiv Detail & Related papers (2024-01-12T16:42:10Z) - Watch the Speakers: A Hybrid Continuous Attribution Network for Emotion
Recognition in Conversation With Emotion Disentanglement [8.17164107060944]
Emotion Recognition in Conversation (ERC) has attracted widespread attention in the natural language processing field.
Existing ERC methods face challenges in achieving generalization to diverse scenarios due to insufficient modeling of context.
We present a Hybrid Continuous Attributive Network (HCAN) to address these issues in the perspective of emotional continuation and emotional attribution.
arXiv Detail & Related papers (2023-09-18T14:18:16Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
This work focuses on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues.
To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme.
arXiv Detail & Related papers (2023-05-23T02:49:35Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video.
The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs)
We propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities.
arXiv Detail & Related papers (2022-10-22T14:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.