論文の概要: Bio-Inspired Classification: Combining Information Theory and Spiking Neural Networks -- Influence of the Learning Rules
- arxiv url: http://arxiv.org/abs/2506.06750v1
- Date: Sat, 07 Jun 2025 10:43:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.461397
- Title: Bio-Inspired Classification: Combining Information Theory and Spiking Neural Networks -- Influence of the Learning Rules
- Title(参考訳): バイオインスパイアされた分類:情報理論とスパイクニューラルネットワークを組み合わせた学習ルールの影響
- Authors: Zofia Rudnicka, Janusz Szczepanski, Agnieszka Pregowska,
- Abstract要約: トレーニングスパイキングニューラルネットワーク(SNN)は、そのユニークな性質のため、難しい。
バイオインスパイアされた学習ルールを含む,選択された学習アルゴリズムの種類が,複雑性の正確な分類に与える影響を考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training of Spiking Neural Networks (SNN) is challenging due to their unique properties, including temporal dynamics, non-differentiability of spike events, and sparse event-driven activations. In this paper, we widely consider the influence of the type of chosen learning algorithm, including bioinspired learning rules on the accuracy of classification. We proposed a bioinspired classifier based on the combination of SNN and Lempel-Ziv complexity (LZC). This approach synergizes the strengths of SNNs in temporal precision and biological realism with LZC's structural complexity analysis, facilitating efficient and interpretable classification of spatiotemporal neural data. It turned out that the classic backpropagation algorithm achieves excellent classification accuracy, but at extremely high computational cost, which makes it impractical for real-time applications. Biologically inspired learning algorithms such as tempotron and Spikprop provide increased computational efficiency while maintaining competitive classification performance, making them suitable for time-sensitive tasks. The results obtained indicate that the selection of the most appropriate learning algorithm depends on the trade-off between classification accuracy and computational cost as well as application constraints.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)のトレーニングは、時間的ダイナミクス、スパイクイベントの非微分可能性、スパースイベント駆動のアクティベーションなど、そのユニークな特性のために難しい。
本稿では,バイオインスパイアされた学習ルールを含む,選択された学習アルゴリズムの種類が,分類の精度に与える影響を広く検討する。
我々は,SNNとLempel-Ziv複雑性(LZC)を組み合わせたバイオインスパイアされた分類器を提案した。
このアプローチは、LZCの構造的複雑性解析と時間的精度および生物学的リアリズムにおけるSNNの強みを相乗し、時空間神経データの効率的かつ解釈可能な分類を容易にする。
その結果、古典的バックプロパゲーションアルゴリズムは優れた分類精度を実現するが、計算コストが非常に高く、リアルタイムアプリケーションでは実用的ではないことがわかった。
トポトロンやスパイクプロップのような生物学的にインスパイアされた学習アルゴリズムは、競争力のある分類性能を維持しながら計算効率を向上し、時間に敏感なタスクに適している。
その結果、最も適切な学習アルゴリズムの選択は、分類精度と計算コストのトレードオフとアプリケーション制約に依存することがわかった。
関連論文リスト
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
畳み込みニューラルネットワーク(CNN)は、ディープラーニングアルゴリズムの代表クラスである。
テキストCNNニューラルネットワークに基づくテキスト分類タスクのためのSA-CNNニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T14:27:34Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
本稿では時系列行動の分類のための説明可能なニューラルネットワーク・シンボリック・フレームワークを提案する。
提案手法の計算効率, コンパクト性, 解釈可能性について, シナリオの駆動と海軍の監視事例研究を通じて実証する。
論文 参考訳(メタデータ) (2022-10-04T21:11:54Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Ensemble plasticity and network adaptability in SNNs [0.726437825413781]
人工スパイキングニューラルネットワーク(ASNN)は、離散的なイベントベース(スパイク)計算のため、より優れた情報処理効率を約束する。
本研究では,スパイク活動のみを用いたエントロピーとネットワークアクティベーションに基づく新しいアンサンブル学習手法を提案する。
その結果, スパイクレートの低いニューロンクラスターを刈り取ると, 一般化や性能の低下が予想されることがわかった。
論文 参考訳(メタデータ) (2022-03-11T01:14:51Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。