論文の概要: Hybrid Vision Transformer-Mamba Framework for Autism Diagnosis via Eye-Tracking Analysis
- arxiv url: http://arxiv.org/abs/2506.06886v1
- Date: Sat, 07 Jun 2025 18:27:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.546129
- Title: Hybrid Vision Transformer-Mamba Framework for Autism Diagnosis via Eye-Tracking Analysis
- Title(参考訳): アイトラック解析による自閉症診断のためのハイブリッドビジョントランス-マンバフレームワーク
- Authors: Wafaa Kasri, Yassine Himeur, Abigail Copiaco, Wathiq Mansoor, Ammar Albanna, Valsamma Eapen,
- Abstract要約: 本研究では,視覚変換器(ViT)とビジョン・マンバを組み合わせたハイブリッドなディープラーニングフレームワークを提案する。
このモデルは、注意に基づく融合を用いて視覚、音声、顔の手がかりを統合し、空間的、時間的両方のダイナミクスをキャプチャする。
Saliency4ASDデータセットでテストした結果、提案されたViT-Mambaモデルは既存の手法より優れており、精度0.96、スコア0.95F1、感度0.97、特異度0.94を達成している。
- 参考スコア(独自算出の注目度): 2.481802259298367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate Autism Spectrum Disorder (ASD) diagnosis is vital for early intervention. This study presents a hybrid deep learning framework combining Vision Transformers (ViT) and Vision Mamba to detect ASD using eye-tracking data. The model uses attention-based fusion to integrate visual, speech, and facial cues, capturing both spatial and temporal dynamics. Unlike traditional handcrafted methods, it applies state-of-the-art deep learning and explainable AI techniques to enhance diagnostic accuracy and transparency. Tested on the Saliency4ASD dataset, the proposed ViT-Mamba model outperformed existing methods, achieving 0.96 accuracy, 0.95 F1-score, 0.97 sensitivity, and 0.94 specificity. These findings show the model's promise for scalable, interpretable ASD screening, especially in resource-constrained or remote clinical settings where access to expert diagnosis is limited.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)の正確な診断は早期介入には不可欠である。
本研究では、視覚変換器(ViT)とビジョン・マンバを組み合わせたハイブリッドなディープラーニングフレームワークを提案し、視線追跡データを用いてASDを検出する。
このモデルは、注意に基づく融合を用いて視覚、音声、顔の手がかりを統合し、空間的、時間的両方のダイナミクスをキャプチャする。
従来の手作りの手法とは異なり、診断精度と透明性を高めるために最先端のディープラーニングと説明可能なAI技術を適用している。
Saliency4ASDデータセットでテストされ、提案されたViT-Mambaモデルは既存の手法より優れ、精度0.96、スコア0.95F1、感度0.97、特異度0.94を達成した。
これらの結果は、特に専門的診断へのアクセスが制限されたリソース制約または遠隔臨床環境で、スケーラブルで解釈可能なASDスクリーニングに対するモデルの約束を示している。
関連論文リスト
- Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging [41.446379453352534]
LDAE(Latent Diffusion Autoencoder)は、医用画像における効率的で有意義な教師なし学習のための、エンコーダ-デコーダ拡散に基づく新しいフレームワークである。
本研究は,ADNIデータベースの脳MRIを用いたアルツハイマー病(AD)を事例として検討した。
論文 参考訳(メタデータ) (2025-04-11T15:37:46Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
本稿では,2次元ガウススプラッティングとTransformer UNetアーキテクチャを組み合わせた皮膚癌自動診断手法を提案する。
セグメンテーションと分類の精度は著しく向上した。
この統合は、新しいベンチマークをこの分野に設定し、マルチタスク医療画像解析手法のさらなる研究の可能性を強調している。
論文 参考訳(メタデータ) (2025-02-23T23:28:47Z) - Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Pathology Analysis [37.11302829771659]
大規模視覚言語モデル(LVLM)は、入力解像度の制約によって制限され、病理画像解析の効率と精度を損なう。
課題誘導型機能拡張と課題誘導型詳細機能補完の2つの革新的戦略を提案する。
OmniPathは診断精度と効率において既存の方法よりも優れていた。
論文 参考訳(メタデータ) (2024-12-12T18:07:23Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
医用イメージングに適した説明可能なAI手法を開発した。
我々は、画像領域と周波数領域の両方にわたるMRIスキャンを分析する畳み込みニューラルネットワーク(CNN)を採用している。
このアプローチは、初期のトレーニング効率を高めるだけでなく、追加機能がモデル予測にどのように影響するかの理解を深めます。
論文 参考訳(メタデータ) (2024-09-20T15:43:26Z) - Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
自閉症スペクトラム障害(ASD)の早期診断と介入は、自閉症者の生活の質を著しく向上させることが示されている。
ASDの客観的バイオマーカーは診断精度の向上に役立つ。
深層学習(DL)は,医療画像データから疾患や病態を診断する上で,優れた成果を上げている。
本研究の目的は, ASD の精度と解釈性を向上させることであり, ASD を正確に分類できるだけでなく,その動作に関する説明可能な洞察を提供する DL モデルを作成することである。
論文 参考訳(メタデータ) (2024-09-19T23:08:09Z) - Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder [3.6630139570443996]
自閉症スペクトラム障害(ASD)に関連する表現型マーカーを検出するためのコンピュータビジョンモデルをトレーニングするためのデータセットを提供する。
視線,頭位,顔のランドマークを入力として,LSTMを用いた個別モデルを訓練し,テストAUCは86%,67%,78%であった。
論文 参考訳(メタデータ) (2024-08-23T17:55:58Z) - Shifting Focus: From Global Semantics to Local Prominent Features in Swin-Transformer for Knee Osteoarthritis Severity Assessment [42.09313885494969]
我々はSwin Transformerの能力を利用して階層的な枠組みを通じて画像内の空間的依存関係を識別する。
我々の新しい貢献は、局所的な特徴表現を精細化し、分類器の最終的な分布に特化することにある。
Knee osteoArthritis (KOA) グレード分類のための2つの確立されたベンチマークを広範囲に検証した結果,本モデルは有意な堅牢性と精度を示した。
論文 参考訳(メタデータ) (2024-03-15T01:09:58Z) - Involution Fused ConvNet for Classifying Eye-Tracking Patterns of
Children with Autism Spectrum Disorder [1.225920962851304]
自閉症スペクトラム障害(ASD)は、診断が難しい複雑な神経疾患である。多くの研究では、ASDと診断された子供が注意範囲を維持し、焦点を絞った視力の低下に苦しむことが示されている。
視線追跡技術は、視線異常が自閉症の診断的特徴として認識されて以来、ASDの文脈で特に注目を集めてきた。
論文 参考訳(メタデータ) (2024-01-07T20:08:17Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。