論文の概要: Basis Transformers for Multi-Task Tabular Regression
- arxiv url: http://arxiv.org/abs/2506.06926v1
- Date: Sat, 07 Jun 2025 21:29:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.566639
- Title: Basis Transformers for Multi-Task Tabular Regression
- Title(参考訳): マルチタスクタブラリ回帰のためのバス変換器
- Authors: Wei Min Loh, Jiaqi Shang, Pascal Poupart,
- Abstract要約: 本稿では,表型データを扱う上での課題に対処するために,新しいテキストベーストランスフォーマーアーキテクチャを提案する。
我々の設計では、中央値R2$スコアの0.338と、OpenML-CTR23ベンチマークの34タスク間の標準偏差が最低値である。
我々のモデルは、最高のパフォーマンスのベースライン言語モデルよりも5倍少ないパラメータを持つ。
- 参考スコア(独自算出の注目度): 17.598714726183797
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Dealing with tabular data is challenging due to partial information, noise, and heterogeneous structure. Existing techniques often struggle to simultaneously address key aspects of tabular data such as textual information, a variable number of columns, and unseen data without metadata besides column names. We propose a novel architecture, \textit{basis transformers}, specifically designed to tackle these challenges while respecting inherent invariances in tabular data, including hierarchical structure and the representation of numeric values. We evaluate our design on a multi-task tabular regression benchmark, achieving an improvement of 0.338 in the median $R^2$ score and the lowest standard deviation across 34 tasks from the OpenML-CTR23 benchmark. Furthermore, our model has five times fewer parameters than the best-performing baseline and surpasses pretrained large language model baselines -- even when initialized from randomized weights.
- Abstract(参考訳): 表データの扱いは部分的な情報やノイズ、異種構造のために困難である。
既存のテクニックは、テキスト情報、列数、列名以外のメタデータなしで見えないデータなど、表データの重要な側面を同時に扱うのに苦労することが多い。
本稿では,階層構造や数値の表現など,表形式のデータに固有の不変性を尊重しながら,これらの課題に対処する新しいアーキテクチャである「textit{basis transformers」を提案する。
OpenML-CTR23ベンチマークでは,中央値のR^2$スコアの0.338と,34タスク間の標準偏差が最低値である。
さらに、我々のモデルは、最高の性能のベースラインよりも5倍少ないパラメータを持ち、ランダム化重みから初期化しても、事前訓練された大きな言語モデルベースラインを超えます。
関連論文リスト
- Multimodal Tabular Reasoning with Privileged Structured Information [67.40011423365712]
ブリッジインfOrmation (sc Turbo) を用いたタブウラー推論(TabUlar Reasoning)について紹介する。
sc TurboはDeepSeek-R1をベースにした構造対応の推論トレースジェネレータの恩恵を受ける。
sc Turboは、複数のデータセットで最先端のパフォーマンス(+7.2%対以前のSOTA)を達成する。
論文 参考訳(メタデータ) (2025-06-04T15:46:30Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
本稿では,表型データから直交三重項を抽出し,それを検索拡張生成(RAG)モデルに統合することにより,微調整GPT-3.5-turbo-0125モデルにより生成された応答の精度,コヒーレンス,コンテキスト的リッチ性を向上させる手法を提案する。
FeTaQAデータセットの既存のベースライン、特にSacre-BLEUとROUGEの指標に優れています。
論文 参考訳(メタデータ) (2024-09-21T16:46:15Z) - Table Transformers for Imputing Textual Attributes [15.823533688884105]
本稿では,TTITA(Imputing Textual Attributes)のためのテーブルトランスフォーマー(Table Transformer)という新しいエンドツーエンドアプローチを提案する。
提案手法は,リカレントニューラルネットワークやLlama2などのベースラインモデルよりも優れた性能を示す。
マルチタスク学習を組み込んで、不均一な列を同時にインプットし、テキストインプットの性能を高める。
論文 参考訳(メタデータ) (2024-08-04T19:54:12Z) - LaTable: Towards Large Tabular Models [63.995130144110156]
タブラル生成基盤モデルは、異なるデータセットの不均一な特徴空間のために構築が困難である。
LaTableは、これらの課題に対処し、異なるデータセットでトレーニング可能な、新しい拡散モデルである。
LaTableは、分散生成のベースラインよりも優れており、微調整されたLaTableは、より少ないサンプルで分散データセットをより良く生成できる。
論文 参考訳(メタデータ) (2024-06-25T16:03:50Z) - Large Scale Transfer Learning for Tabular Data via Language Modeling [30.44823668480631]
グラフ予測のための言語モデルであるTabuLa-8Bを提案する。
4百万を超えるユニークなテーブルから210億行を超えるデータセットを使用します。
その結果,TabuLa-8Bはランダムな推測よりも15ポイント以上高い未確認のテーブル上でゼロショット精度を持つことがわかった。
論文 参考訳(メタデータ) (2024-06-17T18:58:20Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - Rethinking Pre-Training in Tabular Data: A Neighborhood Embedding Perspective [71.45945607871715]
メタ表現(TabPTM)を用いたタブラルデータ事前学習を提案する。
中心となる考え方は、データインスタンスを共有機能空間に埋め込むことで、各インスタンスは、近隣の固定数とそのラベルまでの距離で表現される。
101データセットの大規模な実験は、微調整の有無にかかわらず、分類タスクと回帰タスクの両方においてTabPTMの有効性を確認した。
論文 参考訳(メタデータ) (2023-10-31T18:03:54Z) - Dynamic Prompt Learning via Policy Gradient for Semi-structured
Mathematical Reasoning [150.17907456113537]
数学的な推論を必要とする38,431のグレードレベルの問題を含む新しいデータセットであるTabular Math Word Problems (TabMWP)を提案する。
我々は,GPT-3モデルを含む,TabMWP上での事前学習モデルの評価を行った。
本稿では、ポリシー勾配を利用して、少量のトレーニングデータからコンテキスト内サンプルを選択する新しいアプローチ、PromptPGを提案する。
論文 参考訳(メタデータ) (2022-09-29T08:01:04Z) - Benchmarking Multimodal AutoML for Tabular Data with Text Fields [83.43249184357053]
テキストフィールドを含む18個のマルチモーダルデータテーブルを組み立てる。
このベンチマークにより、研究者は、数値的、分類的、テキスト的特徴を用いて教師あり学習を行うための独自の方法を評価することができる。
論文 参考訳(メタデータ) (2021-11-04T09:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。