Making a Pipeline Production-Ready: Challenges and Lessons Learned in the Healthcare Domain
- URL: http://arxiv.org/abs/2506.06946v3
- Date: Sun, 06 Jul 2025 15:45:08 GMT
- Title: Making a Pipeline Production-Ready: Challenges and Lessons Learned in the Healthcare Domain
- Authors: Daniel Angelo Esteves Lawand, Lucas Quaresma Medina Lam, Roberto Oliveira Bolgheroni, Renato Cordeiro Ferreira, Alfredo Goldman, Marcelo Finger,
- Abstract summary: SPIRA is a project whose goal is to create an ML-Enabled System (MLES) to pre-diagnose respiratory insufficiency via speech analysis.<n>This paper presents an overview of the architecture of the MLES, then compares three versions of its Continuous Training subsystem.<n>The paper shares challenges and lessons learned, offering insights for researchers and practitioners seeking to productionize their pipelines.
- Score: 2.0905671861214894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying a Machine Learning (ML) training pipeline into production requires good software engineering practices. Unfortunately, the typical data science workflow often leads to code that lacks critical software quality attributes. This experience report investigates this problem in SPIRA, a project whose goal is to create an ML-Enabled System (MLES) to pre-diagnose insufficiency respiratory via speech analysis. This paper presents an overview of the architecture of the MLES, then compares three versions of its Continuous Training subsystem: from a proof of concept Big Ball of Mud (v1), to a design pattern-based Modular Monolith (v2), to a test-driven set of Microservices (v3) Each version improved its overall extensibility, maintainability, robustness, and resiliency. The paper shares challenges and lessons learned in this process, offering insights for researchers and practitioners seeking to productionize their pipelines.
Related papers
- From Prompt to Pipeline: Large Language Models for Scientific Workflow Development in Bioinformatics [2.2160604288512324]
This study investigates whether modern Large Language Models (LLMs) can support the generation of accurate, complete, and usable bioinformatics tasks.<n>We evaluate these models using diverse SNP analysis, RNA-seq, DNA methylation, and data retrieval platforms.<n>The results show that Gemini 2.5 Flash excels in generating Galaxy, while DeepSeek-V3 performs strongly in Nextflow.
arXiv Detail & Related papers (2025-07-27T04:08:11Z) - Leveraging Machine Learning and Enhanced Parallelism Detection for BPMN Model Generation from Text [75.77648333476776]
This paper introduces an automated pipeline for extracting BPMN models from text.<n>A key contribution of this work is the introduction of a newly annotated dataset.<n>We augment the dataset with 15 newly annotated documents containing 32 parallel gateways for model training.
arXiv Detail & Related papers (2025-07-11T07:25:55Z) - Evaluating Large Language Models for Real-World Engineering Tasks [75.97299249823972]
This paper introduces a curated database comprising over 100 questions derived from authentic, production-oriented engineering scenarios.<n>Using this dataset, we evaluate four state-of-the-art Large Language Models (LLMs)<n>Our results show that LLMs demonstrate strengths in basic temporal and structural reasoning but struggle significantly with abstract reasoning, formal modeling, and context-sensitive engineering logic.
arXiv Detail & Related papers (2025-05-12T14:05:23Z) - On Domain-Specific Post-Training for Multimodal Large Language Models [72.67107077850939]
This paper systematically investigates domain adaptation of MLLMs through post-training.<n>We focus on data synthesis, training pipelines, and task evaluation.<n>We conduct experiments in high-impact domains such as biomedicine, food, and remote sensing.
arXiv Detail & Related papers (2024-11-29T18:42:28Z) - Machine Learning Operations: A Mapping Study [0.0]
This article discusses the issues that exist in several components of the MLOps pipeline.
A systematic mapping study is performed to identify the challenges that arise in the MLOps system categorized by different focus areas.
The main value of this work is it maps distinctive challenges in MLOps along with the recommended solutions outlined in our study.
arXiv Detail & Related papers (2024-09-28T17:17:40Z) - Instrumentation and Analysis of Native ML Pipelines via Logical Query Plans [3.2362171533623054]
We envision highly-automated software platforms to assist data scientists with developing, validating, monitoring, and analysing their Machine Learning pipelines.
We extract "logical query plans" from ML pipeline code relying on popular libraries.
Based on these plans, we automatically infer pipeline semantics and instrument and rewrite the ML pipelines to enable diverse use cases without requiring data scientists to manually annotate or rewrite their code.
arXiv Detail & Related papers (2024-07-10T11:35:02Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
We introduce a novel tool invocation pipeline designed to control massive real-world APIs.
This pipeline mirrors the human task-solving process, addressing complicated real-life user queries.
Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements.
arXiv Detail & Related papers (2024-02-28T08:42:23Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
This research presents a detailed review of MLOps, its benefits, difficulties, evolutions, and important underlying technologies.
The MLOps workflow is explained in detail along with the various tools necessary for both model and data exploration and deployment.
This article also puts light on the end-to-end production of ML projects using various maturity levels of automated pipelines.
arXiv Detail & Related papers (2023-05-27T20:44:14Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
We argue that re-purposing existing tools won't solve the current productivity issues.
We introduce Metaflow, an open-source framework for ML projects explicitly designed to boost the productivity of data practitioners.
arXiv Detail & Related papers (2023-03-21T11:28:09Z) - Operationalizing Machine Learning: An Interview Study [13.300075655862573]
We conduct semi-structured interviews with 18 machine learning engineers (MLEs) working across many applications.
Our interviews expose three variables that govern success for a production ML deployment: Velocity, Validation, and Versioning.
We summarize common practices for successful ML experimentation, deployment, and sustaining production performance.
arXiv Detail & Related papers (2022-09-16T16:59:36Z) - Modeling Quality and Machine Learning Pipelines through Extended Feature
Models [0.0]
We propose a new engineering approach for quality ML pipeline by properly extending the Feature Models meta-model.
The presented approach allows to model ML pipelines, their quality requirements (on the whole pipeline and on single phases) and quality characteristics of algorithms used to implement each pipeline phase.
arXiv Detail & Related papers (2022-07-15T15:20:28Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - Pushing the Limits of Simple Pipelines for Few-Shot Learning: External
Data and Fine-Tuning Make a Difference [74.80730361332711]
Few-shot learning is an important and topical problem in computer vision.
We show that a simple transformer-based pipeline yields surprisingly good performance on standard benchmarks.
arXiv Detail & Related papers (2022-04-15T02:55:58Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Machine Learning Pipelines: Provenance, Reproducibility and FAIR Data
Principles [0.0]
We describe our goals and initial steps in supporting the end-to-end of machine learning pipelines.
We investigate which factors beyond the availability of source code and datasets influence the influence of ML experiments.
We propose ways to apply FAIR data practices to ML experiments.
arXiv Detail & Related papers (2020-06-22T10:17:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.