Machine Learning Operations: A Mapping Study
- URL: http://arxiv.org/abs/2409.19416v1
- Date: Sat, 28 Sep 2024 17:17:40 GMT
- Title: Machine Learning Operations: A Mapping Study
- Authors: Abhijit Chakraborty, Suddhasvatta Das, Kevin Gary,
- Abstract summary: This article discusses the issues that exist in several components of the MLOps pipeline.
A systematic mapping study is performed to identify the challenges that arise in the MLOps system categorized by different focus areas.
The main value of this work is it maps distinctive challenges in MLOps along with the recommended solutions outlined in our study.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning and AI have been recently embraced by many companies. Machine Learning Operations, (MLOps), refers to the use of continuous software engineering processes, such as DevOps, in the deployment of machine learning models to production. Nevertheless, not all machine learning initiatives successfully transition to the production stage owing to the multitude of intricate factors involved. This article discusses the issues that exist in several components of the MLOps pipeline, namely the data manipulation pipeline, model building pipeline, and deployment pipeline. A systematic mapping study is performed to identify the challenges that arise in the MLOps system categorized by different focus areas. Using this data, realistic and applicable recommendations are offered for tools or solutions that can be used for their implementation. The main value of this work is it maps distinctive challenges in MLOps along with the recommended solutions outlined in our study. These guidelines are not specific to any particular tool and are applicable to both research and industrial settings.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - Topological Methods in Machine Learning: A Tutorial for Practitioners [4.297070083645049]
Topological Machine Learning (TML) is an emerging field that leverages techniques from algebraic topology to analyze complex data structures.
This tutorial provides a comprehensive introduction to two key TML techniques, persistent homology and the Mapper algorithm.
To enhance accessibility, we adopt a data-centric approach, enabling readers to gain hands-on experience applying these techniques to relevant tasks.
arXiv Detail & Related papers (2024-09-04T17:44:52Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - On Continuous Integration / Continuous Delivery for Automated Deployment
of Machine Learning Models using MLOps [1.2885809002769633]
This research provides a more in-depth look at the machine learning lifecycle and the key distinctions between DevOps and MLOps.
In the MLOps approach, we discuss tools and approaches for executing the CI/CD pipeline of machine learning frameworks.
Following that, we take a deep look into push and pull-based deployments in Github Operations (GitOps)
arXiv Detail & Related papers (2022-02-07T22:04:38Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Challenges in Deploying Machine Learning: a Survey of Case Studies [11.028123436097616]
This survey reviews published reports of deploying machine learning solutions in a variety of use cases, industries and applications.
By mapping found challenges to the steps of the machine learning deployment workflow we show that practitioners face issues at each stage of the deployment process.
arXiv Detail & Related papers (2020-11-18T16:20:28Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - PipeSim: Trace-driven Simulation of Large-Scale AI Operations Platforms [4.060731229044571]
We present a trace-driven simulation-based experimentation and analytics environment for large-scale AI systems.
Analytics data from a production-grade AI platform developed at IBM are used to build a comprehensive simulation model.
We implement the model in a standalone, discrete event simulator, and provide a toolkit for running experiments.
arXiv Detail & Related papers (2020-06-22T19:55:37Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.