Modified K-means Algorithm with Local Optimality Guarantees
- URL: http://arxiv.org/abs/2506.06990v2
- Date: Wed, 11 Jun 2025 06:52:53 GMT
- Title: Modified K-means Algorithm with Local Optimality Guarantees
- Authors: Mingyi Li, Michael R. Metel, Akiko Takeda,
- Abstract summary: The K-means algorithm is one of the most widely studied clustering algorithms in machine learning.<n>In this paper, we present conditions under which the K-means algorithm converges to a locally optimal solution.<n>We propose simple modifications to the K-means algorithm which ensure local optimality in both the continuous and discrete sense.
- Score: 10.936166435599574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The K-means algorithm is one of the most widely studied clustering algorithms in machine learning. While extensive research has focused on its ability to achieve a globally optimal solution, there still lacks a rigorous analysis of its local optimality guarantees. In this paper, we first present conditions under which the K-means algorithm converges to a locally optimal solution. Based on this, we propose simple modifications to the K-means algorithm which ensure local optimality in both the continuous and discrete sense, with the same computational complexity as the original K-means algorithm. As the dissimilarity measure, we consider a general Bregman divergence, which is an extension of the squared Euclidean distance often used in the K-means algorithm. Numerical experiments confirm that the K-means algorithm does not always find a locally optimal solution in practice, while our proposed methods provide improved locally optimal solutions with reduced clustering loss. Our code is available at https://github.com/lmingyi/LO-K-means.
Related papers
- Ranking Vectors Clustering: Theory and Applications [2.456159043970008]
We study the k-centroids ranking vectors clustering problem (KRC)<n>Unlike classical k-means clustering (KMC), KRC constrains both the observations and centroids to be ranking vectors.<n>We develop an efficient approximation algorithm, KRCA, which iteratively refines initial solutions from KMC.
arXiv Detail & Related papers (2025-07-16T19:00:09Z) - K*-Means: A Parameter-free Clustering Algorithm [55.20132267309382]
k*-means is a novel clustering algorithm that eliminates the need to set k or any other parameters.<n>It uses the minimum description length principle to automatically determine the optimal number of clusters, k*, by splitting and merging clusters.<n>We prove that k*-means is guaranteed to converge and demonstrate experimentally that it significantly outperforms existing methods in scenarios where k is unknown.
arXiv Detail & Related papers (2025-05-17T08:41:07Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Efficient Convex Algorithms for Universal Kernel Learning [46.573275307034336]
An ideal set of kernels should: admit a linear parameterization (for tractability); dense in the set of all kernels (for accuracy)
Previous algorithms for optimization of kernels were limited to classification and relied on computationally complex Semidefinite Programming (SDP) algorithms.
We propose a SVD-QCQPQP algorithm which dramatically reduces the computational complexity as compared with previous SDP-based approaches.
arXiv Detail & Related papers (2023-04-15T04:57:37Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
We propose a novel approach to improve initial cluster selection for K-means algorithm.
The Convex Hull algorithm facilitates the computing of the first two centroids and the remaining ones are selected according to the distance from previously selected centers.
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data respectively.
arXiv Detail & Related papers (2022-10-18T00:58:50Z) - How to Use K-means for Big Data Clustering? [2.1165011830664677]
K-means is the simplest and most widely used algorithm under the Euclidean Minimum Sum-of-Squares Clustering (MSSC) model.
We propose a new parallel scheme of using K-means and K-means++ algorithms for big data clustering.
arXiv Detail & Related papers (2022-04-14T08:18:01Z) - A density peaks clustering algorithm with sparse search and K-d tree [16.141611031128427]
Density peaks clustering algorithm with sparse search and K-d tree is developed to solve this problem.
Experiments are carried out on datasets with different distribution characteristics, by comparing with other five typical clustering algorithms.
arXiv Detail & Related papers (2022-03-02T09:29:40Z) - Combining K-means type algorithms with Hill Climbing for Joint
Stratification and Sample Allocation Designs [0.0]
This is a sample problem in which we search for the optimal stratification from the set of all possible stratifications of basic strata.
evaluating the cost of each solution is expensive.
We compare the above multi-stage combination of algorithms with three recent algorithms and report the solution costs, evaluation times and training times.
arXiv Detail & Related papers (2021-08-18T08:41:58Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Locally Private k-Means in One Round [44.00192304748844]
We provide an approximation algorithm for k-means clustering in the one-round (aka non-interactive) local model of differential privacy (DP)
This algorithm achieves an approximation ratio arbitrarily close to the best non private approximation algorithm.
arXiv Detail & Related papers (2021-04-20T03:07:31Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.