Adversarial Paraphrasing: A Universal Attack for Humanizing AI-Generated Text
- URL: http://arxiv.org/abs/2506.07001v1
- Date: Sun, 08 Jun 2025 05:15:01 GMT
- Title: Adversarial Paraphrasing: A Universal Attack for Humanizing AI-Generated Text
- Authors: Yize Cheng, Vinu Sankar Sadasivan, Mehrdad Saberi, Shoumik Saha, Soheil Feizi,
- Abstract summary: We introduce Adversarial Paraphrasing, a training-free attack framework that universally humanizes any AI-generated text to evade detection more effectively.<n>Our attack is both broadly effective and highly transferable across several detection systems.
- Score: 42.70026220176376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing capabilities of Large Language Models (LLMs) have raised concerns about their misuse in AI-generated plagiarism and social engineering. While various AI-generated text detectors have been proposed to mitigate these risks, many remain vulnerable to simple evasion techniques such as paraphrasing. However, recent detectors have shown greater robustness against such basic attacks. In this work, we introduce Adversarial Paraphrasing, a training-free attack framework that universally humanizes any AI-generated text to evade detection more effectively. Our approach leverages an off-the-shelf instruction-following LLM to paraphrase AI-generated content under the guidance of an AI text detector, producing adversarial examples that are specifically optimized to bypass detection. Extensive experiments show that our attack is both broadly effective and highly transferable across several detection systems. For instance, compared to simple paraphrasing attack--which, ironically, increases the true positive at 1% false positive (T@1%F) by 8.57% on RADAR and 15.03% on Fast-DetectGPT--adversarial paraphrasing, guided by OpenAI-RoBERTa-Large, reduces T@1%F by 64.49% on RADAR and a striking 98.96% on Fast-DetectGPT. Across a diverse set of detectors--including neural network-based, watermark-based, and zero-shot approaches--our attack achieves an average T@1%F reduction of 87.88% under the guidance of OpenAI-RoBERTa-Large. We also analyze the tradeoff between text quality and attack success to find that our method can significantly reduce detection rates, with mostly a slight degradation in text quality. Our adversarial setup highlights the need for more robust and resilient detection strategies in the light of increasingly sophisticated evasion techniques.
Related papers
- Evaluating the Performance of AI Text Detectors, Few-Shot and Chain-of-Thought Prompting Using DeepSeek Generated Text [2.942616054218564]
Adrialversa attacks, such as standard and humanized paraphrasing, inhibit detectors' ability to detect text.<n>We investigate whether six generally accessible AI Text, Content Detector AI, Copyleaks, QuillBot, GPT-2, and GPTZero can consistently recognize text generated by DeepSeek.
arXiv Detail & Related papers (2025-07-23T21:26:33Z) - Your Language Model Can Secretly Write Like Humans: Contrastive Paraphrase Attacks on LLM-Generated Text Detectors [65.27124213266491]
We propose textbfContrastive textbfParaphrase textbfAttack (CoPA), a training-free method that effectively deceives text detectors.<n>CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by large language models.<n>Our theoretical analysis suggests the superiority of the proposed attack.
arXiv Detail & Related papers (2025-05-21T10:08:39Z) - AuthorMist: Evading AI Text Detectors with Reinforcement Learning [4.806579822134391]
AuthorMist is a novel reinforcement learning-based system to transform AI-generated text into human-like writing.<n>We show that AuthorMist effectively reduces the detectability of AI-generated text while preserving the original meaning.
arXiv Detail & Related papers (2025-03-10T12:41:05Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - A Practical Examination of AI-Generated Text Detectors for Large Language Models [25.919278893876193]
Machine-generated content detectors claim to identify such text under various conditions and from any language model.<n>This paper critically evaluates these claims by assessing several popular detectors on a range of domains, datasets, and models that these detectors have not previously encountered.
arXiv Detail & Related papers (2024-12-06T15:56:11Z) - ESPERANTO: Evaluating Synthesized Phrases to Enhance Robustness in AI Detection for Text Origination [1.8418334324753884]
This paper introduces back-translation as a novel technique for evading detection.
We present a model that combines these back-translated texts to produce a manipulated version of the original AI-generated text.
We evaluate this technique on nine AI detectors, including six open-source and three proprietary systems.
arXiv Detail & Related papers (2024-09-22T01:13:22Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADAR is based on adversarial training of a paraphraser and a detector.
The paraphraser's goal is to generate realistic content to evade AI-text detection.
RADAR uses the feedback from the detector to update the paraphraser, and vice versa.
arXiv Detail & Related papers (2023-07-07T21:13:27Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
We present a paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering.
Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking.
We introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider.
arXiv Detail & Related papers (2023-03-23T16:29:27Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
Large Language Models (LLMs) perform impressively well in various applications.<n>The potential for misuse of these models in activities such as plagiarism, generating fake news, and spamming has raised concern about their responsible use.<n>We stress-test the robustness of these AI text detectors in the presence of an attacker.
arXiv Detail & Related papers (2023-03-17T17:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.