ESPERANTO: Evaluating Synthesized Phrases to Enhance Robustness in AI Detection for Text Origination
- URL: http://arxiv.org/abs/2409.14285v1
- Date: Sun, 22 Sep 2024 01:13:22 GMT
- Title: ESPERANTO: Evaluating Synthesized Phrases to Enhance Robustness in AI Detection for Text Origination
- Authors: Navid Ayoobi, Lily Knab, Wen Cheng, David Pantoja, Hamidreza Alikhani, Sylvain Flamant, Jin Kim, Arjun Mukherjee,
- Abstract summary: This paper introduces back-translation as a novel technique for evading detection.
We present a model that combines these back-translated texts to produce a manipulated version of the original AI-generated text.
We evaluate this technique on nine AI detectors, including six open-source and three proprietary systems.
- Score: 1.8418334324753884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While large language models (LLMs) exhibit significant utility across various domains, they simultaneously are susceptible to exploitation for unethical purposes, including academic misconduct and dissemination of misinformation. Consequently, AI-generated text detection systems have emerged as a countermeasure. However, these detection mechanisms demonstrate vulnerability to evasion techniques and lack robustness against textual manipulations. This paper introduces back-translation as a novel technique for evading detection, underscoring the need to enhance the robustness of current detection systems. The proposed method involves translating AI-generated text through multiple languages before back-translating to English. We present a model that combines these back-translated texts to produce a manipulated version of the original AI-generated text. Our findings demonstrate that the manipulated text retains the original semantics while significantly reducing the true positive rate (TPR) of existing detection methods. We evaluate this technique on nine AI detectors, including six open-source and three proprietary systems, revealing their susceptibility to back-translation manipulation. In response to the identified shortcomings of existing AI text detectors, we present a countermeasure to improve the robustness against this form of manipulation. Our results indicate that the TPR of the proposed method declines by only 1.85% after back-translation manipulation. Furthermore, we build a large dataset of 720k texts using eight different LLMs. Our dataset contains both human-authored and LLM-generated texts in various domains and writing styles to assess the performance of our method and existing detectors. This dataset is publicly shared for the benefit of the research community.
Related papers
- DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning [24.99797253885887]
We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors.
We propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework.
Our method is compatible with a range of text encoders.
arXiv Detail & Related papers (2024-10-28T12:34:49Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Deciphering Textual Authenticity: A Generalized Strategy through the Lens of Large Language Semantics for Detecting Human vs. Machine-Generated Text [8.290557547578146]
We introduce a novel system, T5LLMCipher, for detecting machine-generated text using a pretrained T5 encoder combined with LLM embedding sub-clustering.
We find that our approach provides state-of-the-art generalization ability, with an average increase in F1 score on machine-generated text of 19.6% on unseen generators and domains.
arXiv Detail & Related papers (2024-01-17T18:45:13Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADAR is based on adversarial training of a paraphraser and a detector.
The paraphraser's goal is to generate realistic content to evade AI-text detection.
RADAR uses the feedback from the detector to update the paraphraser, and vice versa.
arXiv Detail & Related papers (2023-07-07T21:13:27Z) - Multiscale Positive-Unlabeled Detection of AI-Generated Texts [27.956604193427772]
Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the difficulty of short-text detection.
MPU method augments detection performance on long AI-generated texts, and significantly improves short-text detection of language model detectors.
arXiv Detail & Related papers (2023-05-29T15:25:00Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
We present a paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering.
Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking.
We introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider.
arXiv Detail & Related papers (2023-03-23T16:29:27Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
Unregulated use of LLMs can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc.
Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques.
In this paper, we show that these detectors are not reliable in practical scenarios.
arXiv Detail & Related papers (2023-03-17T17:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.