論文の概要: Reasoning with RAGged events: RAG-Enhanced Event Knowledge Base Construction and reasoning with proof-assistants
- arxiv url: http://arxiv.org/abs/2506.07042v1
- Date: Sun, 08 Jun 2025 08:36:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.64576
- Title: Reasoning with RAGged events: RAG-Enhanced Event Knowledge Base Construction and reasoning with proof-assistants
- Title(参考訳): RAGを用いた推論: RAGによるイベント知識ベースの構築と証明支援による推論
- Authors: Stergios Chatzikyriakidis,
- Abstract要約: 本稿では,複数のLPMを用いた過去のイベントの自動抽出モデルを提案する。
我々はトゥキディデスの史料を用いて評価を行う。
抽出されたRDF表現をCoq証明アシスタント仕様に変換する自動翻訳パイプラインを開発した。
- 参考スコア(独自算出の注目度): 0.9790236766474201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extracting structured computational representations of historical events from narrative text remains computationally expensive when constructed manually. While RDF/OWL reasoners enable graph-based reasoning, they are limited to fragments of first-order logic, preventing deeper temporal and semantic analysis. This paper addresses both challenges by developing automatic historical event extraction models using multiple LLMs (GPT-4, Claude, Llama 3.2) with three enhancement strategies: pure base generation, knowledge graph enhancement, and Retrieval-Augmented Generation (RAG). We conducted comprehensive evaluations using historical texts from Thucydides. Our findings reveal that enhancement strategies optimize different performance dimensions rather than providing universal improvements. For coverage and historical breadth, base generation achieves optimal performance with Claude and GPT-4 extracting comprehensive events. However, for precision, RAG enhancement improves coordinate accuracy and metadata completeness. Model architecture fundamentally determines enhancement sensitivity: larger models demonstrate robust baseline performance with incremental RAG improvements, while Llama 3.2 shows extreme variance from competitive performance to complete failure. We then developed an automated translation pipeline converting extracted RDF representations into Coq proof assistant specifications, enabling higher-order reasoning beyond RDF capabilities including multi-step causal verification, temporal arithmetic with BC dates, and formal proofs about historical causation. The Coq formalization validates that RAG-discovered event types represent legitimate domain-specific semantic structures rather than ontological violations.
- Abstract(参考訳): 物語テキストから歴史的事象の構造化された計算表現を抽出することは、手作業で構築する場合も計算コストがかかる。
RDF/OWL推論はグラフベースの推論を可能にするが、それらは一階述語論理の断片に限られており、より深い時間的・意味的な分析を妨げている。
本稿では,複数のLLM(GPT-4,Claude,Llama 3.2)を用いた履歴イベントの自動抽出モデルを開発することで,これらの課題に対処する。
我々はトゥキディデスの古文書を用いた総合的な評価を行った。
その結果,拡張戦略は普遍的な改善を提供するのではなく,様々な性能の次元を最適化することがわかった。
カバー範囲と履歴幅については、ベースジェネレーションがClaudeとGPT-4で最適なパフォーマンスを実現し、包括的なイベントを抽出する。
しかしながら、精度向上のため、RAG拡張は座標精度とメタデータの完全性を向上させる。
モデルアーキテクチャは基本的に強化感度を決定づける: 大きなモデルは増分RAGの改善による堅牢なベースライン性能を示し、一方Llama 3.2は競合性能から完全な失敗への極端な差異を示している。
次に、抽出されたRDF表現をCoq証明アシスタント仕様に変換する自動翻訳パイプラインを開発し、多段階因果検証、BC日付の時間算術、過去の因果関係に関する公式な証明を含むRDF能力を超える高次推論を可能にする。
Coqの形式化は、RAGが発見したイベントタイプが、オントロジ違反ではなく、ドメイン固有の正当な意味構造を表していることを検証している。
関連論文リスト
- Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
我々は,物語文書における時間的,因果的,文字的整合性を理解するために,頑健で差別的なQAベンチマークを開発する。
次に、バイナリマッピングでリンクされたエンティティとイベントのサブグラフを分離したまま保持するデュアルグラフフレームワークであるEntity-Event RAG(E2RAG)を紹介します。
ChronoQA全体で、我々のアプローチは最先端の非構造化およびKGベースのRAGベースラインよりも優れており、因果一貫性クエリや文字整合性クエリが顕著である。
論文 参考訳(メタデータ) (2025-06-06T10:07:21Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG)は、大規模言語モデルがより広範な知識ソースにアクセスすることを可能にする。
ノイズの多いコンテンツを処理するために生成モデルの能力を向上させることは、ロバストなパフォーマンスに等しく重要であることを実証する。
本稿では,3つの重要なイノベーションを通じて知識利用を改善するKARE-RAGを提案する。
論文 参考訳(メタデータ) (2025-06-03T06:31:17Z) - DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation [4.113142669523488]
ドメイン固有のQAシステムは、生成頻度を必要とするが、構造化専門家の知識に基づく高い事実精度を必要とする。
本稿では,マルチレベル知識グラフ構築と意味ベクトル検索を統合した,スケーラブルでカスタマイズ可能なハイブリッドQAフレームワークであるDO-RAGを提案する。
論文 参考訳(メタデータ) (2025-05-17T06:40:17Z) - CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation [3.8808821719659763]
適応検索拡張生成(CDF-RAG)のための因果動的フィードバックを導入する。
CDF-RAGは、クエリを反復的に洗練し、構造化因果グラフを検索し、相互接続された知識ソース間のマルチホップ因果推論を可能にする。
我々は,CDF-RAGを4つの多様なデータセット上で評価し,既存のRAG法よりも応答精度と因果正性を向上させる能力を示した。
論文 参考訳(メタデータ) (2025-04-17T01:15:13Z) - ROGRAG: A Robustly Optimized GraphRAG Framework [45.947928801693266]
グラフベースの検索強化生成(GraphRAG)は、動的検索のためのグラフとしてドメイン知識を構造化することによってこの問題に対処する。
既存のパイプラインには複雑なエンジニアリングが含まれており、個々のコンポーネントの影響を分離することは困難である。
本稿では,ロバストに最適化されたGraphRAGフレームワークであるROGRAGを紹介する。
論文 参考訳(メタデータ) (2025-03-09T06:20:24Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。