Learning Compact Vision Tokens for Efficient Large Multimodal Models
- URL: http://arxiv.org/abs/2506.07138v1
- Date: Sun, 08 Jun 2025 13:36:06 GMT
- Title: Learning Compact Vision Tokens for Efficient Large Multimodal Models
- Authors: Hao Tang, Chengchao Shen,
- Abstract summary: We propose a method to learn compact vision tokens for short vision token sequence.<n>We also introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence.<n>Our method achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks.
- Score: 11.212952256422609
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only $25\%$ vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.
Related papers
- Streamline Without Sacrifice -- Squeeze out Computation Redundancy in LMM [41.796933489107815]
We identify and study the computation-level redundancy on vision tokens to ensure no information loss.<n>We propose ProxyV, a novel approach that utilizes proxy vision tokens to alleviate the computational burden on original vision tokens.
arXiv Detail & Related papers (2025-05-21T17:59:52Z) - Neural Discrete Token Representation Learning for Extreme Token Reduction in Video Large Language Models [50.214593234229255]
We introduce the novel task of Extreme Short Token Reduction, which aims to represent entire videos using a minimal set of discrete tokens.<n>On the Extreme Short Token Reduction task, our VQToken compresses sequences to just 0.07 percent of their original length while incurring only a 0.66 percent drop in accuracy on the NextQA-MC benchmark.
arXiv Detail & Related papers (2025-03-21T09:46:31Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone.<n>The number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs.<n>We propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep.
arXiv Detail & Related papers (2024-11-30T18:54:32Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.<n>To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.<n>We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - VoCo-LLaMA: Towards Vision Compression with Large Language Models [31.398537194299752]
Vision-Language Models (VLMs) have achieved remarkable success in various multi-modal tasks, but they are often bottlenecked by the limited context window.<n>We propose VoCo-LLaMA, the first approach to compress vision tokens using LLMs.<n>Our method achieves minimal performance loss with a compression ratio of 576$times$, resulting in up to 94.8$%$ fewer FLOPs and 69.6$%$ acceleration in inference time.
arXiv Detail & Related papers (2024-06-18T05:05:12Z) - Matryoshka Multimodal Models [92.41824727506751]
We propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens.
We find that COCO-style benchmarks only need around 9 visual tokens to obtain accuracy similar to that of using all 576 tokens.
arXiv Detail & Related papers (2024-05-27T17:59:56Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.