Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning
- URL: http://arxiv.org/abs/2507.04406v1
- Date: Sun, 06 Jul 2025 14:40:05 GMT
- Title: Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning
- Authors: Uri Sherman, Tomer Koren, Yishay Mansour,
- Abstract summary: We study reinforcement learning in the policy learning setting.<n>The goal is to find a policy whose performance is competitive with the best policy in a given class of interest.
- Score: 66.4260157478436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study reinforcement learning (RL) in the agnostic policy learning setting, where the goal is to find a policy whose performance is competitive with the best policy in a given class of interest $\Pi$ -- crucially, without assuming that $\Pi$ contains the optimal policy. We propose a general policy learning framework that reduces this problem to first-order optimization in a non-Euclidean space, leading to new algorithms as well as shedding light on the convergence properties of existing ones. Specifically, under the assumption that $\Pi$ is convex and satisfies a variational gradient dominance (VGD) condition -- an assumption known to be strictly weaker than more standard completeness and coverability conditions -- we obtain sample complexity upper bounds for three policy learning algorithms: \emph{(i)} Steepest Descent Policy Optimization, derived from a constrained steepest descent method for non-convex optimization; \emph{(ii)} the classical Conservative Policy Iteration algorithm \citep{kakade2002approximately} reinterpreted through the lens of the Frank-Wolfe method, which leads to improved convergence results; and \emph{(iii)} an on-policy instantiation of the well-studied Policy Mirror Descent algorithm. Finally, we empirically evaluate the VGD condition across several standard environments, demonstrating the practical relevance of our key assumption.
Related papers
- Quantile-Optimal Policy Learning under Unmeasured Confounding [55.72891849926314]
We study quantile-optimal policy learning where the goal is to find a policy whose reward distribution has the largest $alpha$-quantile for some $alpha in (0, 1)$.<n>Such a problem suffers from three main challenges: (i) nonlinearity of the quantile objective as a functional of the reward distribution, (ii) unobserved confounding issue, and (iii) insufficient coverage of the offline dataset.
arXiv Detail & Related papers (2025-06-08T13:37:38Z) - Convergence of Policy Mirror Descent Beyond Compatible Function Approximation [66.4260157478436]
We develop theoretical PMD general policy classes where we strictly assume a weaker variational dominance and obtain convergence to the best-in-class policy.<n>Our main notion leverages a novel notion induced by the local norm induced by the occupancy- gradient measure.
arXiv Detail & Related papers (2025-02-16T08:05:46Z) - e-COP : Episodic Constrained Optimization of Policies [12.854752753529151]
We present the first policy optimization algorithm for constrained Reinforcement Learning (RL) in episodic (finite horizon) settings.<n>We show that our algorithm has similar or better performance than SoTA (non-episodic) algorithms adapted for the episodic setting.
arXiv Detail & Related papers (2024-06-13T20:12:09Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Low-Switching Policy Gradient with Exploration via Online Sensitivity
Sampling [23.989009116398208]
We design a low-switching sample-efficient policy optimization algorithm, LPO, with general non-linear function approximation.
We show that, our algorithm obtains an $varepsilon$-optimal policy with only $widetildeO(fractextpoly(d)varepsilon3)$ samples.
arXiv Detail & Related papers (2023-06-15T23:51:46Z) - Sample Complexity of Policy-Based Methods under Off-Policy Sampling and
Linear Function Approximation [8.465228064780748]
off-policy sampling and linear function approximation are employed for policy evaluation.
Various policy update rules, including natural policy gradient (NPG), are considered for policy update.
We establish for the first time an overall $mathcalO(epsilon-2)$ sample complexity for finding an optimal policy.
arXiv Detail & Related papers (2022-08-05T15:59:05Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - On the Convergence and Sample Efficiency of Variance-Reduced Policy
Gradient Method [38.34416337932712]
Policy gives rise to a rich class of reinforcement learning (RL) methods, for example the REINFORCE.
Yet the best known sample complexity result for such methods to find an $epsilon$-optimal policy is $mathcalO(epsilon-3)$, which is suboptimal.
We study the fundamental convergence properties and sample efficiency of first-order policy optimization method.
arXiv Detail & Related papers (2021-02-17T07:06:19Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and avoids violation of certain constraints.
This is the first-time analysis of SRL algorithms with global optimal policies.
arXiv Detail & Related papers (2020-11-11T16:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.