Semantic-preserved Augmentation with Confidence-weighted Fine-tuning for Aspect Category Sentiment Analysis
- URL: http://arxiv.org/abs/2506.07148v1
- Date: Sun, 08 Jun 2025 13:53:28 GMT
- Title: Semantic-preserved Augmentation with Confidence-weighted Fine-tuning for Aspect Category Sentiment Analysis
- Authors: Yaping Chai, Haoran Xie, Joe S. Qin,
- Abstract summary: Large language model (LLM) is an effective approach to addressing data scarcity in low-resource scenarios.<n>We introduce a data augmentation strategy for the aspect category sentiment analysis task.<n>We employ a post-processing technique to ensure semantic consistency between the generated sentence and the original sentence.
- Score: 3.1394848827666544
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language model (LLM) is an effective approach to addressing data scarcity in low-resource scenarios. Recent existing research designs hand-crafted prompts to guide LLM for data augmentation. We introduce a data augmentation strategy for the aspect category sentiment analysis (ACSA) task that preserves the original sentence semantics and has linguistic diversity, specifically by providing a structured prompt template for an LLM to generate predefined content. In addition, we employ a post-processing technique to further ensure semantic consistency between the generated sentence and the original sentence. The augmented data increases the semantic coverage of the training distribution, enabling the model better to understand the relationship between aspect categories and sentiment polarities, enhancing its inference capabilities. Furthermore, we propose a confidence-weighted fine-tuning strategy to encourage the model to generate more confident and accurate sentiment polarity predictions. Compared with powerful and recent works, our method consistently achieves the best performance on four benchmark datasets over all baselines.
Related papers
- Iterative Augmentation with Summarization Refinement (IASR) Evaluation for Unstructured Survey data Modeling and Analysis [0.43988112145759295]
This work introduces a principled evaluation framework for large language model (LLM) based text augmentation.<n> Empirical evaluations show that GPT-3.5 Turbo achieved the best balance of semantic fidelity, diversity, and generation efficiency.
arXiv Detail & Related papers (2025-07-16T10:49:30Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
We propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context.<n>Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage.<n>Experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations.
arXiv Detail & Related papers (2025-02-25T03:03:35Z) - Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using datasets like NLI.<n>Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency.<n>We propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence.<n> Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
arXiv Detail & Related papers (2025-02-19T12:07:53Z) - Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.<n>We introduce two prompting strategies to semantically enhance unlabeled text.<n> Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - Enhancing Semantic Consistency of Large Language Models through Model Editing: An Interpretability-Oriented Approach [28.07366458452159]
Large Language Models (LLM) generate inconsistent and sometimes contradictory outputs when presented with a prompt that has equivalent semantics but is expressed differently from the original prompt.<n>To achieve semantic consistency of an LLM, one of the key approaches is to finetune the model with prompt-output pairs with semantically equivalent meanings.<n>We propose a more interpretable method (i.e., model editing) to enhance the semantic consistency of LLMs.
arXiv Detail & Related papers (2025-01-19T13:26:15Z) - Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks.
This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media.
arXiv Detail & Related papers (2024-11-22T12:37:41Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)<n>Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)<n>We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.