Mind the Web: The Security of Web Use Agents
- URL: http://arxiv.org/abs/2506.07153v1
- Date: Sun, 08 Jun 2025 13:59:55 GMT
- Title: Mind the Web: The Security of Web Use Agents
- Authors: Avishag Shapira, Parth Atulbhai Gandhi, Edan Habler, Oleg Brodt, Asaf Shabtai,
- Abstract summary: We show how attackers can exploit web-use agents' high-privilege capabilities by embedding malicious content in web pages.<n>We introduce the task-aligned injection technique that frame malicious commands as helpful task guidance rather than obvious attacks.<n>We propose comprehensive mitigation strategies including oversight mechanisms, execution constraints, and task-aware reasoning techniques.
- Score: 8.863542098424558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Web-use agents are rapidly being deployed to automate complex web tasks, operating with extensive browser capabilities including multi-tab navigation, DOM manipulation, JavaScript execution and authenticated session access. However, these powerful capabilities create a critical and previously unexplored attack surface. This paper demonstrates how attackers can exploit web-use agents' high-privilege capabilities by embedding malicious content in web pages such as comments, reviews, or advertisements that agents encounter during legitimate browsing tasks. In addition, we introduce the task-aligned injection technique that frame malicious commands as helpful task guidance rather than obvious attacks. This technique exploiting fundamental limitations in LLMs' contextual reasoning: agents struggle in maintaining coherent contextual awareness and fail to detect when seemingly helpful web content contains steering attempts that deviate from their original task goal. Through systematic evaluation of four popular agents (OpenAI Operator, Browser Use, Do Browser, OpenOperator), we demonstrate nine payload types that compromise confidentiality, integrity, and availability, including unauthorized camera activation, user impersonation, local file exfiltration, password leakage, and denial of service, with validation across multiple LLMs achieving success rates of 80%-100%. These payloads succeed across agents with built-in safety mechanisms, requiring only the ability to post content on public websites, creating unprecedented risks given the ease of exploitation combined with agents' high-privilege access. To address this attack, we propose comprehensive mitigation strategies including oversight mechanisms, execution constraints, and task-aware reasoning techniques, providing practical directions for secure development and deployment.
Related papers
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - Context manipulation attacks : Web agents are susceptible to corrupted memory [37.66661108936654]
"Plan injection" is a novel context manipulation attack that corrupts these agents' internal task representations by targeting this vulnerable context.<n>We show that plan injections bypass robust prompt injection defenses, achieving up to 3x higher attack success rates than comparable prompt-based attacks.<n>Our findings highlight that secure memory handling must be a first-class concern in agentic systems.
arXiv Detail & Related papers (2025-06-18T14:29:02Z) - The Hidden Dangers of Browsing AI Agents [0.0]
This paper presents a comprehensive security evaluation of such agents, focusing on systemic vulnerabilities across multiple architectural layers.<n>Our work outlines the first end-to-end threat model for browsing agents and provides actionable guidance for securing their deployment in real-world environments.
arXiv Detail & Related papers (2025-05-19T13:10:29Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentFuzzer, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentFuzzer on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
Large vision-language models (LVLMs) introduce a unique vulnerability: susceptibility to malicious attacks via visual inputs.<n>We propose ESIII (Embedding Security Instructions Into Images), a novel methodology for transforming the visual space from a source of vulnerability into an active defense mechanism.
arXiv Detail & Related papers (2025-03-14T17:39:45Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
Large Language Model (LLM) agents are increasingly being deployed as conversational assistants capable of performing complex real-world tasks through tool integration.<n>In particular, indirect prompt injection attacks pose a critical threat, where malicious instructions embedded within external data sources can manipulate agents to deviate from user intentions.<n>We propose a novel perspective that reframes agent security from preventing harmful actions to ensuring task alignment, requiring every agent action to serve user objectives.
arXiv Detail & Related papers (2024-12-21T16:17:48Z) - AdvAgent: Controllable Blackbox Red-teaming on Web Agents [22.682464365220916]
AdvAgent is a black-box red-teaming framework for attacking web agents.<n>It employs a reinforcement learning-based pipeline to train an adversarial prompter model.<n>With careful attack design, these prompts effectively exploit agent weaknesses while maintaining stealthiness and controllability.
arXiv Detail & Related papers (2024-10-22T20:18:26Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.<n>AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - WIPI: A New Web Threat for LLM-Driven Web Agents [28.651763099760664]
We introduce a novel threat, WIPI, that indirectly controls Web Agent to execute malicious instructions embedded in publicly accessible webpages.
To launch a successful WIPI works in a black-box environment.
Our methodology achieves an average attack success rate (ASR) exceeding 90% even in pure black-box scenarios.
arXiv Detail & Related papers (2024-02-26T19:01:54Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.