論文の概要: Mind the Web: The Security of Web Use Agents
- arxiv url: http://arxiv.org/abs/2506.07153v2
- Date: Mon, 20 Oct 2025 18:33:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:07.722328
- Title: Mind the Web: The Security of Web Use Agents
- Title(参考訳): Mind the Web: Web 利用エージェントのセキュリティ
- Authors: Avishag Shapira, Parth Atulbhai Gandhi, Edan Habler, Asaf Shabtai,
- Abstract要約: 本稿では,Webページに悪意のあるコンテンツを埋め込むことで,攻撃者がWeb利用エージェントを利用する方法を示す。
本稿では,悪質なコマンドをタスクガイダンスとしてフレーム化するタスクアラインインジェクション手法を提案する。
本稿では,監視機構,実行制約,タスク認識推論技術などを含む包括的緩和戦略を提案する。
- 参考スコア(独自算出の注目度): 11.075673765065103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Web-use agents are rapidly being deployed to automate complex web tasks with extensive browser capabilities. However, these capabilities create a critical and previously unexplored attack surface. This paper demonstrates how attackers can exploit web-use agents by embedding malicious content in web pages, such as comments, reviews, or advertisements, that agents encounter during legitimate browsing tasks. We introduce the task-aligned injection technique that frames malicious commands as helpful task guidance rather than obvious attacks, exploiting fundamental limitations in LLMs' contextual reasoning. Agents struggle to maintain coherent contextual awareness and fail to detect when seemingly helpful web content contains steering attempts that deviate them from their original task goal. To scale this attack, we developed an automated three-stage pipeline that generates effective injections without manual annotation or costly online agent interactions during training, remaining efficient even with limited training data. This pipeline produces a generator model that we evaluate on five popular agents using payloads organized by the Confidentiality-Integrity-Availability (CIA) security triad, including unauthorized camera activation, file exfiltration, user impersonation, phishing, and denial-of-service. This generator achieves over 80% attack success rate (ASR) with strong transferability across unseen payloads, diverse web environments, and different underlying LLMs. This attack succeed even against agents with built-in safety mechanisms, requiring only the ability to post content on public websites. To address this risk, we propose comprehensive mitigation strategies including oversight mechanisms, execution constraints, and task-aware reasoning techniques.
- Abstract(参考訳): 大規模なブラウザ機能を備えた複雑なWebタスクを自動化するために、Web利用エージェントが急速にデプロイされている。
しかし、これらの能力は、クリティカルで以前は探索されていなかった攻撃面を生み出す。
本稿では,攻撃者がWebページに悪意のあるコンテンツ(コメント,レビュー,広告など)を埋め込んで,正当なブラウジングタスクで遭遇するエージェントを活用できることを示す。
本稿では,LLMの文脈的推論における基本的な制約を利用して,悪意のあるコマンドを明らかな攻撃ではなく,有用なタスクガイダンスとしてフレーム化するタスクアラインインジェクション手法を提案する。
エージェントは、コヒーレントなコンテキスト認識を維持するのに苦労し、一見有用なWebコンテンツが元のタスク目標から逸脱するステアリングの試みを含んでいることを検知できない。
この攻撃を拡大するために,手動のアノテーションやコストのかかるオンラインエージェントインタラクションを使わずに効果的なインジェクションを自動生成する3段階パイプラインを開発した。
このパイプラインは、CIAのセキュリティトリアドによって編成されたペイロードを用いて、5つの人気のあるエージェントに対して、不正なカメラアクティベーション、ファイルの消去、ユーザ偽造、フィッシング、サービス拒否を含むジェネレータモデルを生成する。
このジェネレータは80%以上の攻撃成功率(ASR)を達成し、未確認のペイロード、多様なWeb環境、さまざまな基盤となるLLM間での強力な転送性を実現している。
この攻撃は安全機構を内蔵したエージェントに対してさえ成功し、公開ウェブサイトにコンテンツを投稿する機能だけを必要とする。
このリスクに対処するために、監視機構、実行制約、タスク認識推論技術を含む包括的な緩和戦略を提案する。
関連論文リスト
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
OpenAgentSafetyは,8つの危機リスクカテゴリにまたがるエージェントの動作を評価する包括的なフレームワークである。
従来の作業とは異なり、我々のフレームワークは、Webブラウザ、コード実行環境、ファイルシステム、bashシェル、メッセージングプラットフォームなど、実際のツールと対話するエージェントを評価します。
ルールベースの分析とLSM-as-judgeアセスメントを組み合わせることで、過度な行動と微妙な不安全行動の両方を検出する。
論文 参考訳(メタデータ) (2025-07-08T16:18:54Z) - Context manipulation attacks : Web agents are susceptible to corrupted memory [37.66661108936654]
Plan Injection"は、これらのエージェントの内部タスク表現を、この脆弱なコンテキストをターゲットとして破壊する、新しいコンテキスト操作攻撃である。
プランインジェクションはロバスト・プロンプト・インジェクション・ディフェンスを回避し,攻撃成功率を同等のプロンプト・ベース・アタックの最大3倍に向上することを示す。
この結果から,安全なメモリ処理はエージェントシステムにおける第一級の関心事であることが示唆された。
論文 参考訳(メタデータ) (2025-06-18T14:29:02Z) - The Hidden Dangers of Browsing AI Agents [0.0]
本稿では,複数のアーキテクチャ層にまたがるシステム的脆弱性に着目し,このようなエージェントの総合的なセキュリティ評価を行う。
本研究は,ブラウジングエージェントのエンド・ツー・エンドの脅威モデルについて概説し,実環境への展開を確保するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2025-05-19T13:10:29Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentFuzzerを提案する。
我々はAgentFuzzerをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
大きな視覚言語モデル(LVLM)は、視覚入力による悪意のある攻撃に対する感受性という、ユニークな脆弱性を導入している。
本稿では,脆弱性発生源からアクティブ防衛機構へ視覚空間を変換するための新しい手法であるESIIIを提案する。
論文 参考訳(メタデータ) (2025-03-14T17:39:45Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
大きな言語モデル(LLM)エージェントは、ツール統合を通じて複雑な現実世界のタスクを実行できる対話アシスタントとして、ますます多くデプロイされている。
特に間接的なプロンプトインジェクション攻撃は、外部データソースに埋め込まれた悪意のある命令が、エージェントを操作してユーザの意図を逸脱させる、重大な脅威となる。
我々は,エージェントのセキュリティが有害な行為を防止し,タスクアライメントを確保するためには,すべてのエージェントアクションをユーザ目的に役立てる必要がある,という新たな視点を提案する。
論文 参考訳(メタデータ) (2024-12-21T16:17:48Z) - AdvAgent: Controllable Blackbox Red-teaming on Web Agents [22.682464365220916]
AdvAgentは、Webエージェントを攻撃するためのブラックボックスのレッドチームフレームワークである。
強化学習に基づくパイプラインを使用して、敵のプロンプトモデルをトレーニングする。
慎重な攻撃設計では、エージェントの弱点を効果的に活用し、ステルス性と制御性を維持する。
論文 参考訳(メタデータ) (2024-10-22T20:18:26Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
本研究は, 観察空間と行動空間を簡略化することで, LLMベースのWebエージェントを強化する。
AgentOccam は以前の最先端および同時処理を 9.8 (+29.4%) と 5.9 (+15.8%) で上回っている。
論文 参考訳(メタデータ) (2024-10-17T17:50:38Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - WIPI: A New Web Threat for LLM-Driven Web Agents [28.651763099760664]
我々は、Web Agentを間接的に制御し、公開されているWebページに埋め込まれた悪意ある命令を実行する、新しい脅威WIPIを導入する。
WIPIを成功させるためには、ブラックボックス環境で動作させる。
提案手法は,純ブラックボックスシナリオにおいても平均攻撃成功率(ASR)が90%を超えることを達成している。
論文 参考訳(メタデータ) (2024-02-26T19:01:54Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。