Research Knowledge Graphs: the Shifting Paradigm of Scholarly Information Representation
- URL: http://arxiv.org/abs/2506.07285v1
- Date: Sun, 08 Jun 2025 21:10:30 GMT
- Title: Research Knowledge Graphs: the Shifting Paradigm of Scholarly Information Representation
- Authors: Matthäus Zloch, Danilo Dessì, Jennifer D'Souza, Leyla Jael Castro, Benjamin Zapilko, Saurav Karmakar, Brigitte Mathiak, Markus Stocker, Wolfgang Otto, Sören Auer, Stefan Dietze,
- Abstract summary: Research Knowledge Graphs (RKGs) aim at providing an easy to use and machine-actionable representation of research artifacts and their relations.<n>This paper provides the first conceptualisation of the RKG vision, a categorisation of in-use RKGs together with a description of RKG building blocks and principles.
- Score: 2.967893090870586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sharing and reusing research artifacts, such as datasets, publications, or methods is a fundamental part of scientific activity, where heterogeneity of resources and metadata and the common practice of capturing information in unstructured publications pose crucial challenges. Reproducibility of research and finding state-of-the-art methods or data have become increasingly challenging. In this context, the concept of Research Knowledge Graphs (RKGs) has emerged, aiming at providing an easy to use and machine-actionable representation of research artifacts and their relations. That is facilitated through the use of established principles for data representation, the consistent adoption of globally unique persistent identifiers and the reuse and linking of vocabularies and data. This paper provides the first conceptualisation of the RKG vision, a categorisation of in-use RKGs together with a description of RKG building blocks and principles. We also survey real-world RKG implementations differing with respect to scale, schema, data, used vocabulary, and reliability of the contained data. We also characterise different RKG construction methodologies and provide a forward-looking perspective on the diverse applications, opportunities, and challenges associated with the RKG vision.
Related papers
- Research Knowledge Graphs in NFDI4DataScience: Key Activities, Achievements, and Future Directions [4.258678191793365]
NFDI4DataScience is developing and providing Research Knowledge Graphs (RKGs)<n>RKGs aim to capture and connect complex datasets, models, software, and scientific publications.
arXiv Detail & Related papers (2025-08-04T11:11:51Z) - Visual Hand Gesture Recognition with Deep Learning: A Comprehensive Review of Methods, Datasets, Challenges and Future Research Directions [5.983872847786255]
Vision-based hand gesture recognition (VHGR) delivers a wide range of applications, such as sign language understanding and human-computer interaction using cameras.<n>Despite the large volume of research works in the field, a structured and complete survey on VHGR is still missing.<n>This review aims to constitute a useful guideline for researchers, helping them to choose the right strategy for delving into a certain VHGR task.
arXiv Detail & Related papers (2025-07-06T17:03:01Z) - Graph Foundation Models: A Comprehensive Survey [66.74249119139661]
Graph Foundation Models (GFMs) aim to bring scalable, general-purpose intelligence to structured data.<n>This survey provides a comprehensive overview of GFMs, unifying diverse efforts under a modular framework.<n>GFMs are poised to become foundational infrastructure for open-ended reasoning over structured data.
arXiv Detail & Related papers (2025-05-21T05:08:00Z) - Talking to GDELT Through Knowledge Graphs [0.6461717749486492]
We study various Retrieval Augmented Regeneration (RAG) approaches to gain an understanding of the strengths and weaknesses of each approach in a question-answering analysis.<n>To retrieve information from the text corpus we implement a traditional vector store RAG as well as state-of-the-art large language model (LLM) based approaches.
arXiv Detail & Related papers (2025-03-10T17:48:10Z) - Composed Multi-modal Retrieval: A Survey of Approaches and Applications [81.54640206021757]
Composed Multi-modal Retrieval (CMR) emerges as a pivotal next-generation technology.<n>CMR enables users to query images or videos by integrating a reference visual input with textual modifications.<n>This paper provides a comprehensive survey of CMR, covering its fundamental challenges, technical advancements, and applications.
arXiv Detail & Related papers (2025-03-03T09:18:43Z) - G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition [54.45837774534411]
We introduce textbfG-OSR, a benchmark for evaluating Graph Open-Set Recognition (GOSR) methods at both the node and graph levels.<n>Results offer critical insights into the generalizability and limitations of current GOSR methods.
arXiv Detail & Related papers (2025-03-01T13:02:47Z) - Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
Graph out-of-distribution (GOOD) detection focuses on identifying graph data that deviates from the distribution seen during training.<n>We categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches.<n>We discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data.
arXiv Detail & Related papers (2025-02-12T04:07:12Z) - A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models [15.190033208947051]
Retrieval-augmented generation (RAG) has emerged as a promising solution to customize large language models (LLMs)<n>This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG)
arXiv Detail & Related papers (2025-01-21T06:25:21Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - Multi-Source Knowledge Pruning for Retrieval-Augmented Generation: A Benchmark and Empirical Study [46.55831783809377]
Retrieval-augmented generation (RAG) is increasingly recognized as an effective approach to mitigating the hallucination of large language models (LLMs)<n>We develop PruningRAG, a plug-and-play RAG framework that uses multi-granularity pruning strategies to more effectively incorporate relevant context and mitigate the negative impact of misleading information.
arXiv Detail & Related papers (2024-09-03T03:31:37Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
Zero-shot image recognition (ZSIR) aims to recognize and reason in unseen domains by learning generalized knowledge from limited data.<n>This paper thoroughly investigates recent advances in element-wise ZSIR and provides a basis for its future development.
arXiv Detail & Related papers (2024-08-09T05:49:21Z) - SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs [9.668240269886413]
We propose a Semantic Knowledge Graph that integrates semantic concepts from abstracts and other meta-information to represent the corpus.
The SKG can support various semantic queries in academic literature thanks to the high diversity and rich information content stored within.
arXiv Detail & Related papers (2023-06-07T20:16:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.