論文の概要: Multi-Step Guided Diffusion for Image Restoration on Edge Devices: Toward Lightweight Perception in Embodied AI
- arxiv url: http://arxiv.org/abs/2506.07286v1
- Date: Sun, 08 Jun 2025 21:11:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.750053
- Title: Multi-Step Guided Diffusion for Image Restoration on Edge Devices: Toward Lightweight Perception in Embodied AI
- Title(参考訳): エッジデバイスにおける画像復元のためのマルチステップガイド付き拡散 : 身体的AIにおける軽量知覚に向けて
- Authors: Aditya Chakravarty,
- Abstract要約: 本稿では,画像品質,知覚精度,一般化を著しく向上させる多段階最適化手法を提案する。
超分解能およびガウス劣化実験により,ステップ毎の勾配更新の増加はLPIPSとPSNRを最小遅延オーバーヘッドで改善することを示した。
我々の発見はMPGDが、ドローンや移動ロボットのような組込みAIエージェントのリアルタイム視覚認識のための軽量でプラグアンドプレイの修復モジュールとしての可能性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models have shown remarkable flexibility for solving inverse problems without task-specific retraining. However, existing approaches such as Manifold Preserving Guided Diffusion (MPGD) apply only a single gradient update per denoising step, limiting restoration fidelity and robustness, especially in embedded or out-of-distribution settings. In this work, we introduce a multistep optimization strategy within each denoising timestep, significantly enhancing image quality, perceptual accuracy, and generalization. Our experiments on super-resolution and Gaussian deblurring demonstrate that increasing the number of gradient updates per step improves LPIPS and PSNR with minimal latency overhead. Notably, we validate this approach on a Jetson Orin Nano using degraded ImageNet and a UAV dataset, showing that MPGD, originally trained on face datasets, generalizes effectively to natural and aerial scenes. Our findings highlight MPGD's potential as a lightweight, plug-and-play restoration module for real-time visual perception in embodied AI agents such as drones and mobile robots.
- Abstract(参考訳): 拡散モデルは、タスク固有のリトレーニングなしで逆問題の解決に顕著な柔軟性を示した。
しかし、Manifold Preserving Guided Diffusion (MPGD)のような既存のアプローチでは、特に組み込みやアウト・オブ・ディストリビューション設定において、デノイングステップ毎に単一の勾配更新しか適用できない。
本研究は,各認知時間ステップ内に多段階最適化戦略を導入し,画像品質,知覚精度,一般化を著しく向上させる。
超分解能およびガウス劣化実験により,ステップ毎の勾配更新の増加はLPIPSとPSNRを最小遅延オーバーヘッドで改善することを示した。
特に、劣化したImageNetとUAVデータセットを用いてJetson Orin Nano上でこのアプローチを検証し、もともと顔データセットに基づいて訓練されたMPGDが、自然と空中のシーンに効果的に一般化していることを示す。
我々の発見はMPGDが、ドローンや移動ロボットのような組込みAIエージェントのリアルタイム視覚認識のための軽量でプラグアンドプレイの修復モジュールとしての可能性を強調した。
関連論文リスト
- RestoreVAR: Visual Autoregressive Generation for All-in-One Image Restoration [27.307331773270676]
潜時拡散モデル(LDM)はオールインワン画像復元法(AiOR)の知覚的品質を大幅に改善した。
これらの LDM ベースのフレームワークは反復的なデノゲーションプロセスによって推論が遅くなり、時間に敏感なアプリケーションでは実用的でない。
本稿では, AiOR に対する新しい生成手法を提案し, LDM モデルよりも高速な推論を達成しつつ, 復元性能において LDM モデルよりも優れることを示す。
論文 参考訳(メタデータ) (2025-05-23T15:52:26Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - Denoising Autoregressive Representation Learning [13.185567468951628]
DARLはデコーダのみのトランスフォーマーを用いて,画像パッチの自動回帰予測を行う。
提案手法では, 適応型ノイズスケジュールを用いて学習表現を改良し, より大規模なモデルでより長い訓練を行えることを示す。
論文 参考訳(メタデータ) (2024-03-08T10:19:00Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - Generative Diffusion Prior for Unified Image Restoration and Enhancement [62.76390152617949]
既存の画像復元法は、主に自然画像の後方分布を利用する。
教師なしサンプリング方式で後部分布を効果的にモデル化するための生成拡散優先(GDP)を提案する。
GDPは、線形逆問題、非線形問題、ブラインド問題を解くために、プレトレインデノナイジング拡散生成モデル(DDPM)を利用する。
論文 参考訳(メタデータ) (2023-04-03T16:52:43Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。