EVINET: Towards Open-World Graph Learning via Evidential Reasoning Network
- URL: http://arxiv.org/abs/2506.07288v3
- Date: Fri, 01 Aug 2025 08:06:28 GMT
- Title: EVINET: Towards Open-World Graph Learning via Evidential Reasoning Network
- Authors: Weijie Guan, Haohui Wang, Jian Kang, Lihui Liu, Dawei Zhou,
- Abstract summary: This paper introduces Evidential Reasoning Network (EVINET), a framework that integrates Beta embedding within a subjective logic framework.<n>EVINET includes two key modules: Dissonance Reasoning for misclassification detection and Vacuity Reasoning for out-of-distribution detection.<n> Extensive experiments demonstrate that EVINET outperforms state-of-the-art methods across multiple metrics.
- Score: 13.114983443216511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph learning has been crucial to many real-world tasks, but they are often studied with a closed-world assumption, with all possible labels of data known a priori. To enable effective graph learning in an open and noisy environment, it is critical to inform the model users when the model makes a wrong prediction to in-distribution data of a known class, i.e., misclassification detection or when the model encounters out-of-distribution from novel classes, i.e., out-of-distribution detection. This paper introduces Evidential Reasoning Network (EVINET), a framework that addresses these two challenges by integrating Beta embedding within a subjective logic framework. EVINET includes two key modules: Dissonance Reasoning for misclassification detection and Vacuity Reasoning for out-of-distribution detection. Extensive experiments demonstrate that EVINET outperforms state-of-the-art methods across multiple metrics in the tasks of in-distribution classification, misclassification detection, and out-of-distribution detection. EVINET demonstrates the necessity of uncertainty estimation and logical reasoning for misclassification detection and out-of-distribution detection and paves the way for open-world graph learning. Our code and data are available at https://github.com/SSSKJ/EviNET.
Related papers
- Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
Graph out-of-distribution (GOOD) detection focuses on identifying graph data that deviates from the distribution seen during training.<n>We categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches.<n>We discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data.
arXiv Detail & Related papers (2025-02-12T04:07:12Z) - A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.<n>Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.<n>To provide a better understanding of the literature, we introduce a systematic taxonomy that classifies existing methods into model-centric and data-centric approaches.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - KnowGraph: Knowledge-Enabled Anomaly Detection via Logical Reasoning on Graph Data [13.510494408303536]
KnowGraph integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection.
Tests show KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings.
Results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.
arXiv Detail & Related papers (2024-10-10T21:53:33Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.