Towards Generalized Source Tracing for Codec-Based Deepfake Speech
- URL: http://arxiv.org/abs/2506.07294v2
- Date: Tue, 10 Jun 2025 03:26:40 GMT
- Title: Towards Generalized Source Tracing for Codec-Based Deepfake Speech
- Authors: Xuanjun Chen, I-Ming Lin, Lin Zhang, Haibin Wu, Hung-yi Lee, Jyh-Shing Roger Jang,
- Abstract summary: We introduce the Semantic-Acoustic Source Tracing Network (SASTNet), which jointly leverages Whisper for semantic feature encoding and Wav2vec2 with AudioMAE for acoustic feature encoding.<n>Our proposed SASTNet achieves state-of-the-art performance on the CoSG test set of the CodecFake+ dataset, demonstrating its effectiveness for reliable source tracing.
- Score: 52.68106957822706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent attempts at source tracing for codec-based deepfake speech (CodecFake), generated by neural audio codec-based speech generation (CoSG) models, have exhibited suboptimal performance. However, how to train source tracing models using simulated CoSG data while maintaining strong performance on real CoSG-generated audio remains an open challenge. In this paper, we show that models trained solely on codec-resynthesized data tend to overfit to non-speech regions and struggle to generalize to unseen content. To mitigate these challenges, we introduce the Semantic-Acoustic Source Tracing Network (SASTNet), which jointly leverages Whisper for semantic feature encoding and Wav2vec2 with AudioMAE for acoustic feature encoding. Our proposed SASTNet achieves state-of-the-art performance on the CoSG test set of the CodecFake+ dataset, demonstrating its effectiveness for reliable source tracing.
Related papers
- SecoustiCodec: Cross-Modal Aligned Streaming Single-Codecbook Speech Codec [83.61175662066364]
Speech codecs serve as a crucial bridge in unifying speech and text language models.<n>Existing methods face several challenges in semantic encoding.<n>We propose SecoustiCodec, a cross-modal aligned low-bitrate streaming speech codecs.
arXiv Detail & Related papers (2025-08-04T19:22:14Z) - HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling [6.313337261965531]
We introduce HH-Codec, a neural codecs that achieves extreme compression at 24 tokens per second for 24 kHz audio.<n>Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss.<n> HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps.
arXiv Detail & Related papers (2025-07-25T02:44:30Z) - MagiCodec: Simple Masked Gaussian-Injected Codec for High-Fidelity Reconstruction and Generation [19.998635838159217]
MagiCodec is a novel single-layer, streaming Transformer-based audio.<n>We analytically derive the effect of noise injection in the frequency domain, demonstrating its efficacy in atten high-frequency components.<n>We show that MagiCodec surpasses state-of-the-art codecs in both reconstruction quality and downstream tasks.
arXiv Detail & Related papers (2025-05-31T04:31:02Z) - FocalCodec: Low-Bitrate Speech Coding via Focal Modulation Networks [12.446324804274628]
FocalCodec is an efficient low-bitrate based on focal modulation that utilizes a single binary codebook to compress speech.<n>Demo samples, code and checkpoints are available at https://lucadellalib.io/focalcodec-web/.
arXiv Detail & Related papers (2025-02-06T19:24:50Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization stage.<n>X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications.<n>Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation.
arXiv Detail & Related papers (2024-08-30T10:24:07Z) - CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech.
It still suffers from low speaker similarity and poor prosody naturalness.
We propose a multi-modal DSR model by leveraging neural language modeling to improve the reconstruction results.
arXiv Detail & Related papers (2024-06-12T15:42:21Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E R is a robust and efficient zero-shot Text-to-Speech system.
This research has the potential to be applied to meaningful projects, including the creation of speech for those affected by aphasia.
arXiv Detail & Related papers (2024-06-12T04:09:44Z) - Speculative Contrastive Decoding [55.378200871224074]
Large language models(LLMs) exhibit exceptional performance in language tasks, yet their auto-regressive inference is limited due to high computational requirements and is sub-optimal due to the exposure bias.
Inspired by speculative decoding and contrastive decoding, we introduce Speculative Contrastive Decoding(SCD), a straightforward yet powerful decoding approach.
arXiv Detail & Related papers (2023-11-15T14:15:30Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Joint Encoder-Decoder Self-Supervised Pre-training for ASR [0.0]
Self-supervised learning has shown tremendous success in various speech-related downstream tasks.
In this paper, we propose a new paradigm that exploits the power of a decoder during self-supervised learning.
arXiv Detail & Related papers (2022-06-09T12:45:29Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
We introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes.
The proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training.
arXiv Detail & Related papers (2022-03-31T15:33:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.