Evidential Spectrum-Aware Contrastive Learning for OOD Detection in Dynamic Graphs
- URL: http://arxiv.org/abs/2506.07417v2
- Date: Fri, 13 Jun 2025 13:08:22 GMT
- Title: Evidential Spectrum-Aware Contrastive Learning for OOD Detection in Dynamic Graphs
- Authors: Nan Sun, Xixun Lin, Zhiheng Zhou, Yanmin Shang, Zhenlin Cheng, Yanan Cao,
- Abstract summary: Out-of-distribution (OOD) detection in dynamic graphs aims to identify whether incoming data deviates from the distribution of the in-distribution (ID) training set.<n>We propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning.
- Score: 17.750640850821622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Out-of-distribution (OOD) detection in dynamic graphs, which aims to identify whether incoming data deviates from the distribution of the in-distribution (ID) training set, has garnered considerable attention in security-sensitive fields. Current OOD detection paradigms primarily focus on static graphs and confront two critical challenges: i) high bias and high variance caused by single-point estimation, which makes the predictions sensitive to randomness in the data; ii) score homogenization resulting from the lack of OOD training data, where the model only learns ID-specific patterns, resulting in overall low OOD scores and a narrow score gap between ID and OOD data. To tackle these issues, we first investigate OOD detection in dynamic graphs through the lens of Evidential Deep Learning (EDL). Specifically, we propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning. We design an evidential neural network to redefine the output as the posterior Dirichlet distribution, explaining the randomness of inputs through the uncertainty of distribution, which is overlooked by single-point estimation. Moreover, spectrum-aware augmentation module generates OOD approximations to identify patterns with high OOD scores, thereby widening the score gap between ID and OOD data and mitigating score homogenization. Extensive experiments on real-world datasets demonstrate that EviSAC effectively detects OOD samples in dynamic graphs.
Related papers
- HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
arXiv Detail & Related papers (2024-07-23T12:28:59Z) - Enhancing OOD Detection Using Latent Diffusion [5.093257685701887]
Out-of-Distribution (OOD) detection algorithms have been developed to identify unknown samples or objects in real-world deployments.<n>We propose an Outlier Aware Learning framework, which synthesizes OOD training data in the latent space.<n>We also develop a knowledge distillation module to prevent the degradation of ID classification accuracy when training with OOD data.
arXiv Detail & Related papers (2024-06-24T11:01:43Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability.<n>This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
We introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data.
We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection.
arXiv Detail & Related papers (2023-03-24T13:49:05Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
We develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels.
GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities.
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
arXiv Detail & Related papers (2022-11-08T12:41:58Z) - On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution
Detection [7.221206118679026]
The ability to detect Out-of-Distribution (OOD) data is important in safety-critical applications of deep learning.
An existing intuition in the literature is that the diversity of Deep Ensemble predictions indicates distributional shift.
We show experimentally that this intuition is not valid on ImageNet-scale OOD detection.
arXiv Detail & Related papers (2022-07-15T15:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.