On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution
Detection
- URL: http://arxiv.org/abs/2207.07517v1
- Date: Fri, 15 Jul 2022 15:02:38 GMT
- Title: On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution
Detection
- Authors: Guoxuan Xia and Christos-Savvas Bouganis
- Abstract summary: The ability to detect Out-of-Distribution (OOD) data is important in safety-critical applications of deep learning.
An existing intuition in the literature is that the diversity of Deep Ensemble predictions indicates distributional shift.
We show experimentally that this intuition is not valid on ImageNet-scale OOD detection.
- Score: 7.221206118679026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to detect Out-of-Distribution (OOD) data is important in
safety-critical applications of deep learning. The aim is to separate
In-Distribution (ID) data drawn from the training distribution from OOD data
using a measure of uncertainty extracted from a deep neural network. Deep
Ensembles are a well-established method of improving the quality of uncertainty
estimates produced by deep neural networks, and have been shown to have
superior OOD detection performance compared to single models. An existing
intuition in the literature is that the diversity of Deep Ensemble predictions
indicates distributional shift, and so measures of diversity such as Mutual
Information (MI) should be used for OOD detection. We show experimentally that
this intuition is not valid on ImageNet-scale OOD detection -- using MI leads
to 30-40% worse %FPR@95 compared to single-model entropy on some OOD datasets.
We suggest an alternative explanation for Deep Ensembles' better OOD detection
performance -- OOD detection is binary classification and we are ensembling
diverse classifiers. As such we show that practically, even better OOD
detection performance can be achieved for Deep Ensembles by averaging
task-specific detection scores such as Energy over the ensemble.
Related papers
- Dimensionality-induced information loss of outliers in deep neural networks [29.15751143793406]
Out-of-distribution (OOD) detection is a critical issue for systems using a deep neural network (DNN)
We experimentally clarify this issue by investigating the layer dependence of feature representations from multiple perspectives.
We propose a dimensionality-aware OOD detection method based on alignment of features and weights.
arXiv Detail & Related papers (2024-10-29T01:52:46Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities [11.884004583641325]
We introduce the first-of-its-kind benchmark, MultiOOD, characterized by diverse dataset sizes and varying modality combinations.
We first evaluate existing unimodal OOD detection algorithms on MultiOOD, observing that the mere inclusion of additional modalities yields substantial improvements.
We introduce a novel outlier synthesis method, NP-Mix, which explores broader feature spaces by leveraging the information from nearest neighbor classes.
arXiv Detail & Related papers (2024-05-27T17:59:02Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - Is Fine-tuning Needed? Pre-trained Language Models Are Near Perfect for
Out-of-Domain Detection [28.810524375810736]
Out-of-distribution (OOD) detection is a critical task for reliable predictions over text.
Fine-tuning with pre-trained language models has been a de facto procedure to derive OOD detectors.
We show that using distance-based detection methods, pre-trained language models are near-perfect OOD detectors when the distribution shift involves a domain change.
arXiv Detail & Related papers (2023-05-22T17:42:44Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.