Federated In-Context Learning: Iterative Refinement for Improved Answer Quality
- URL: http://arxiv.org/abs/2506.07440v1
- Date: Mon, 09 Jun 2025 05:33:28 GMT
- Title: Federated In-Context Learning: Iterative Refinement for Improved Answer Quality
- Authors: Ruhan Wang, Zhiyong Wang, Chengkai Huang, Rui Wang, Tong Yu, Lina Yao, John C. S. Lui, Dongruo Zhou,
- Abstract summary: In-context learning (ICL) enables language models to generate responses without modifying their parameters by leveraging examples provided in the input.<n>We propose Federated In-Context Learning (Fed-ICL), a general framework that enhances ICL through an iterative, collaborative process.<n>Fed-ICL progressively refines responses by leveraging multi-round interactions between clients and a central server, improving answer quality without the need to transmit model parameters.
- Score: 62.72381208029899
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For question-answering (QA) tasks, in-context learning (ICL) enables language models to generate responses without modifying their parameters by leveraging examples provided in the input. However, the effectiveness of ICL heavily depends on the availability of high-quality examples, which are often scarce due to data privacy constraints, annotation costs, and distribution disparities. A natural solution is to utilize examples stored on client devices, but existing approaches either require transmitting model parameters - incurring significant communication overhead - or fail to fully exploit local datasets, limiting their effectiveness. To address these challenges, we propose Federated In-Context Learning (Fed-ICL), a general framework that enhances ICL through an iterative, collaborative process. Fed-ICL progressively refines responses by leveraging multi-round interactions between clients and a central server, improving answer quality without the need to transmit model parameters. We establish theoretical guarantees for the convergence of Fed-ICL and conduct extensive experiments on standard QA benchmarks, demonstrating that our proposed approach achieves strong performance while maintaining low communication costs.
Related papers
- Addressing Data Quality Decompensation in Federated Learning via Dynamic Client Selection [7.603415982653868]
Shapley-Bid Reputation Optimized Federated Learning (SBRO-FL) is a unified framework integrating dynamic bidding, reputation modeling, and cost-aware selection.<n>A reputation system, inspired by prospect theory, captures historical performance while penalizing inconsistency.<n>Experiments on FashionMNIST, EMNIST, CIFAR-10, and SVHN datasets show that SBRO-FL improves accuracy, convergence speed, and robustness, even in adversarial and low-bid interference scenarios.
arXiv Detail & Related papers (2025-05-27T14:06:51Z) - Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences.<n> RLHF exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks.<n>We propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities.
arXiv Detail & Related papers (2025-05-19T08:33:11Z) - Generalizing Large Language Model Usability Across Resource-Constrained [0.43512163406552007]
dissertation presents a systematic study toward generalizing Large Language Models under real-world constraints.<n>First, it introduces a robust text-centric alignment framework that enables LLMs to seamlessly integrate diverse modalities.<n>Beyond multimodal setting, the dissertation investigates inference-time optimization strategies for LLMs.
arXiv Detail & Related papers (2025-05-13T01:00:12Z) - QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? [4.429189958406034]
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)<n>We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)<n>Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-17T14:07:11Z) - Query-based Knowledge Transfer for Heterogeneous Learning Environments [50.45210784447839]
We propose a novel framework called Query-based Knowledge Transfer (QKT)<n>QKT enables tailored knowledge acquisition to fulfill specific client needs without direct data exchange.<n>Our experiments show that QKT significantly outperforms existing collaborative learning methods.
arXiv Detail & Related papers (2025-04-12T13:09:39Z) - Invariant Federated Learning for Edge Intelligence: Mitigating Heterogeneity and Asynchrony via Exit Strategy and Invariant Penalty [10.54196990763149]
This paper provides an invariant federated learning system for resource-constrained edge intelligence.<n>It can mitigate the impact of heterogeneous and asynchrony via exit strategy and invariant penalty.<n>It shows our system can enhance In-Distribution performance and outperform the state-of-the-art algorithm in Out-Of-Distribution generalization.
arXiv Detail & Related papers (2025-03-08T10:47:27Z) - Generate, Discriminate, Evolve: Enhancing Context Faithfulness via Fine-Grained Sentence-Level Self-Evolution [61.80716438091887]
GenDiE (Generate, Discriminate, Evolve) is a novel self-evolving framework that enhances context faithfulness through fine-grained sentence-level optimization.<n>By treating each sentence in a response as an independent optimization unit, GenDiE effectively addresses the limitations of previous approaches.<n>Experiments on ASQA (in-domain LFQA) and ConFiQA datasets demonstrate that GenDiE surpasses various baselines in both faithfulness and correctness.
arXiv Detail & Related papers (2025-03-03T16:08:33Z) - CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing [56.98081258047281]
Collaborative Inference with Token-lEvel Routing (CITER) is a framework that enables efficient collaboration between small and large language models.<n>We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation.<n>Our experiments show that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications.
arXiv Detail & Related papers (2025-02-04T03:36:44Z) - FedRTS: Federated Robust Pruning via Combinatorial Thompson Sampling [12.067872131025231]
Federated Learning (FL) enables collaborative model training across distributed clients without data sharing.<n>Current methods use dynamic pruning to improve efficiency by periodically adjusting sparse model topologies while maintaining sparsity.<n>We propose Federated Robust pruning via Thompson Sampling (FedRTS), a novel framework designed to develop robust sparse models.
arXiv Detail & Related papers (2025-01-31T13:26:22Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.<n>This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.<n>Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.<n>We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.