Addressing Data Quality Decompensation in Federated Learning via Dynamic Client Selection
- URL: http://arxiv.org/abs/2505.21219v1
- Date: Tue, 27 May 2025 14:06:51 GMT
- Title: Addressing Data Quality Decompensation in Federated Learning via Dynamic Client Selection
- Authors: Qinjun Fei, Nuria Rodríguez-Barroso, María Victoria Luzón, Zhongliang Zhang, Francisco Herrera,
- Abstract summary: Shapley-Bid Reputation Optimized Federated Learning (SBRO-FL) is a unified framework integrating dynamic bidding, reputation modeling, and cost-aware selection.<n>A reputation system, inspired by prospect theory, captures historical performance while penalizing inconsistency.<n>Experiments on FashionMNIST, EMNIST, CIFAR-10, and SVHN datasets show that SBRO-FL improves accuracy, convergence speed, and robustness, even in adversarial and low-bid interference scenarios.
- Score: 7.603415982653868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In cross-silo Federated Learning (FL), client selection is critical to ensure high model performance, yet it remains challenging due to data quality decompensation, budget constraints, and incentive compatibility. As training progresses, these factors exacerbate client heterogeneity and degrade global performance. Most existing approaches treat these challenges in isolation, making jointly optimizing multiple factors difficult. To address this, we propose Shapley-Bid Reputation Optimized Federated Learning (SBRO-FL), a unified framework integrating dynamic bidding, reputation modeling, and cost-aware selection. Clients submit bids based on their perceived data quality, and their contributions are evaluated using Shapley values to quantify their marginal impact on the global model. A reputation system, inspired by prospect theory, captures historical performance while penalizing inconsistency. The client selection problem is formulated as a 0-1 integer program that maximizes reputation-weighted utility under budget constraints. Experiments on FashionMNIST, EMNIST, CIFAR-10, and SVHN datasets show that SBRO-FL improves accuracy, convergence speed, and robustness, even in adversarial and low-bid interference scenarios. Our results highlight the importance of balancing data reliability, incentive compatibility, and cost efficiency to enable scalable and trustworthy FL deployments.
Related papers
- Federated In-Context Learning: Iterative Refinement for Improved Answer Quality [62.72381208029899]
In-context learning (ICL) enables language models to generate responses without modifying their parameters by leveraging examples provided in the input.<n>We propose Federated In-Context Learning (Fed-ICL), a general framework that enhances ICL through an iterative, collaborative process.<n>Fed-ICL progressively refines responses by leveraging multi-round interactions between clients and a central server, improving answer quality without the need to transmit model parameters.
arXiv Detail & Related papers (2025-06-09T05:33:28Z) - Robust Federated Learning with Confidence-Weighted Filtering and GAN-Based Completion under Noisy and Incomplete Data [0.0]
Federated learning (FL) presents an effective solution for collaborative model training while maintaining data privacy across decentralized client datasets.<n>This study proposes a federated learning methodology that systematically addresses data quality issues, including noise, class imbalance, and missing labels.<n>Our results indicate that this method effectively mitigates common data quality challenges, providing a robust, scalable, and privacy compliant solution.
arXiv Detail & Related papers (2025-05-14T18:49:18Z) - HFedCKD: Toward Robust Heterogeneous Federated Learning via Data-free Knowledge Distillation and Two-way Contrast [10.652998357266934]
We propose a system heterogeneous federation method based on data-free knowledge distillation and two-way contrast (HFedCKD)<n>HFedCKD effectively alleviates the knowledge offset caused by a low participation rate under data-free knowledge distillation and improves the performance and stability of the model.<n>We conduct extensive experiments on image and IoT datasets to comprehensively evaluate and verify the generalization and robustness of the proposed HFedCKD framework.
arXiv Detail & Related papers (2025-03-09T08:32:57Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Incentive-Compatible Federated Learning with Stackelberg Game Modeling [11.863770989724959]
We introduce FLamma, a novel Federated Learning framework based on adaptive gamma-based Stackelberg game.<n>Our approach allows the server to act as the leader, dynamically adjusting a decay factor while clients, acting as followers, optimally select their number of local epochs to maximize their utility.<n>Over time, the server incrementally balances client influence, initially rewarding higher-contributing clients and gradually leveling their impact, driving the system toward a Stackelberg Equilibrium.
arXiv Detail & Related papers (2025-01-05T21:04:41Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content [15.620004060097155]
Federated learning (FL) has emerged as a promising paradigm that enables clients to collaboratively train a shared global model without uploading their local data.
We propose a data quality-aware incentive mechanism to encourage clients' participation.
Our proposed mechanism exhibits highest training accuracy and reduces up to 53.34% of the server's cost with real-world datasets.
arXiv Detail & Related papers (2024-06-12T07:47:22Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Price of Stability in Quality-Aware Federated Learning [11.59995920901346]
Federated Learning (FL) is a distributed machine learning scheme that enables clients to train a shared global model without exchanging local data.
We model the clients' interactions as a novel label denoising game and characterize its equilibrium.
We prove that the equilibrium outcome always leads to a lower global model accuracy than the socially optimal solution.
arXiv Detail & Related papers (2023-10-13T00:25:21Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.