A Hybrid GA LLM Framework for Structured Task Optimization
- URL: http://arxiv.org/abs/2506.07483v2
- Date: Mon, 16 Jun 2025 05:48:44 GMT
- Title: A Hybrid GA LLM Framework for Structured Task Optimization
- Authors: William Shum, Rachel Chan, Jonas Lin, Benny Feng, Patrick Lau,
- Abstract summary: GA LLM is a hybrid framework that combines Genetic Algorithms with Large Language Models to handle structured generation tasks under strict constraints.<n>The language model provides domain knowledge and creative variation, while the genetic algorithm ensures structural integrity and global optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: GA LLM is a hybrid framework that combines Genetic Algorithms with Large Language Models to handle structured generation tasks under strict constraints. Each output, such as a plan or report, is treated as a gene, and evolutionary operations like selection, crossover, and mutation are guided by the language model to iteratively improve solutions. The language model provides domain knowledge and creative variation, while the genetic algorithm ensures structural integrity and global optimization. GA LLM has proven effective in tasks such as itinerary planning, academic outlining, and business reporting, consistently producing well structured and requirement satisfying results. Its modular design also makes it easy to adapt to new tasks. Compared to using a language model alone, GA LLM achieves better constraint satisfaction and higher quality solutions by combining the strengths of both components.
Related papers
- Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation [72.44384066166147]
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains.<n>Existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures.<n>We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch.
arXiv Detail & Related papers (2025-07-24T09:17:41Z) - EALG: Evolutionary Adversarial Generation of Language Model-Guided Generators for Combinatorial Optimization [5.575239967310329]
We introduce EALG (Evolutionary Adrial Generation of Language Model Generators), a novel framework that co-evolutione optimization problem instances and their corresponding solvers using large language models (LLMs)<n>EALG leverages a mutation-based approach that dynamically evolves instance generation procedures to create increasingly difficult problems, while simultaneously adaptive adversarial algorithms through interactions with LLMs guided by algorithmic structure.<n>This work explores a new paradigm for optimization that integrates instance generation with solver design, resulting in state-of-the-art performance.
arXiv Detail & Related papers (2025-06-03T08:13:41Z) - CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design [11.639825726501659]
Large language models (LLMs) can autonomously discover high-performings at a fraction of the traditional cost.<n>We propose a hybrid framework that combines verbal and numerical guidance.<n>Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks.
arXiv Detail & Related papers (2025-05-18T07:48:47Z) - Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo [90.78001821963008]
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints.<n>We develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC)<n>Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language.
arXiv Detail & Related papers (2025-04-17T17:49:40Z) - Combinatorial Optimization via LLM-driven Iterated Fine-tuning [47.66752049943335]
We present a novel way to integrate flexible, context-dependent constraints into optimization by leveraging Large Language Models (LLMs)<n>Our framework balances locally constraints with rigorous global optimization more effectively than baseline sampling methods.
arXiv Detail & Related papers (2025-03-10T04:58:18Z) - Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
Multi-task reinforcement learning employs a single policy to complete various tasks, aiming to develop an agent with generalizability across different scenarios.<n>Existing approaches typically use a routing network to generate specific routes for each task and reconstruct a set of modules into diverse models to complete multiple tasks simultaneously.<n>We propose a Model Evolution framework with Genetic Algorithm (MEGA), which enables the model to evolve during training according to the difficulty of the tasks.
arXiv Detail & Related papers (2025-02-19T09:22:34Z) - Can Large Language Models Be Trusted as Evolutionary Optimizers for Network-Structured Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) have impressive capabilities in language understanding and reasoning across diverse domains.<n>In this work, we propose a systematic framework to evaluate the capacity of LLMs to engage with problem structures.<n>We develop a cost-efficient population-level optimization strategy that significantly improves efficiency compared to traditional individual-level approaches.
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Bridging Large Language Models and Optimization: A Unified Framework for Text-attributed Combinatorial Optimization [21.232626415696267]
The Language-based Neural COP solver (LNCS) is a novel framework that is unified for the end-to-end resolution of diverse text-attributed COPs.<n>Extensive experiments validate the effectiveness and generalizability of the LNCS, highlighting its potential as a unified and practical framework for real-world COP applications.
arXiv Detail & Related papers (2024-08-22T08:42:44Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
Large Language Model-based agents have garnered significant attention and are becoming increasingly popular.<n>Planning ability is a crucial component of an LLM-based agent, which generally entails achieving a desired goal from an initial state.<n>Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction [11.165093163378152]
Large language models (LLMs) have demonstrated impressive abilities in generating unstructured natural language according to instructions.
This paper introduces an efficient method, G&O, to enhance their structured text generation capabilities.
arXiv Detail & Related papers (2024-02-20T20:42:02Z) - When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges [50.280704114978384]
Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text.<n> Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - EvoPrompt: Connecting LLMs with Evolutionary Algorithms Yields Powerful Prompt Optimizers [67.64162164254809]
EvoPrompt is a framework for discrete prompt optimization.<n>It borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence.<n>It significantly outperforms human-engineered prompts and existing methods for automatic prompt generation.
arXiv Detail & Related papers (2023-09-15T16:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.