A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction
- URL: http://arxiv.org/abs/2402.13364v1
- Date: Tue, 20 Feb 2024 20:42:02 GMT
- Title: A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction
- Authors: Yinghao Li, Rampi Ramprasad, Chao Zhang
- Abstract summary: Large language models (LLMs) have demonstrated impressive abilities in generating unstructured natural language according to instructions.
This paper introduces an efficient method, G&O, to enhance their structured text generation capabilities.
- Score: 11.165093163378152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive abilities in
generating unstructured natural language according to instructions. However,
their performance can be inconsistent when tasked with producing text that
adheres to specific structured formats, which is crucial in applications like
named entity recognition (NER) or relation extraction (RE). To address this
issue, this paper introduces an efficient method, G&O, to enhance their
structured text generation capabilities. It breaks the generation into a
two-step pipeline: initially, LLMs generate answers in natural language as
intermediate responses. Subsequently, LLMs are asked to organize the output
into the desired structure, using the intermediate responses as context. G&O
effectively separates the generation of content from the structuring process,
reducing the pressure of completing two orthogonal tasks simultaneously. Tested
on zero-shot NER and RE, the results indicate a significant improvement in LLM
performance with minimal additional efforts. This straightforward and adaptable
prompting technique can also be combined with other strategies, like
self-consistency, to further elevate LLM capabilities in various structured
text generation tasks.
Related papers
- Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning [34.85741925091139]
Graph-DPEP framework is grounded in the reasoning behind triplet explanation thoughts presented in natural language.
We develop "ensemble-play", reapplying generation on the entire type list by leveraging the reasoning thoughts embedded in a sub-graph.
arXiv Detail & Related papers (2024-11-05T07:12:36Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
Struct-X operates through five key phases: read-model-fill-reflect-reason''
It encodes structured data into a topological space using graph embeddings.
It fills in missing entity information with knowledge retrieval modules.
The final phase involves constructing a topological network with selected tokens.
arXiv Detail & Related papers (2024-07-17T13:06:25Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
arXiv Detail & Related papers (2023-12-17T17:26:50Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
We introduce SF-GEN, which is grounded in two primary concepts: successor features (SFs) and language model rectification.
SF-GEN seamlessly integrates the two to enable dynamic steering of text generation with no need to alter the LLM's parameters.
To the best of our knowledge, our research represents the first application of successor features in text generation.
arXiv Detail & Related papers (2023-11-03T00:17:08Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPrompt is a framework for discrete prompt optimization.
It borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence.
It significantly outperforms human-engineered prompts and existing methods for automatic prompt generation.
arXiv Detail & Related papers (2023-09-15T16:50:09Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
We develop an emphIterative Reading-then-Reasoning(IRR) approach for solving question answering tasks based on structured data.
Our approach can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines.
arXiv Detail & Related papers (2023-05-16T17:45:23Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.