Cross-channel Perception Learning for H&E-to-IHC Virtual Staining
- URL: http://arxiv.org/abs/2506.07559v1
- Date: Mon, 09 Jun 2025 08:54:15 GMT
- Title: Cross-channel Perception Learning for H&E-to-IHC Virtual Staining
- Authors: Hao Yang, JianYu Wu, Run Fang, Xuelian Zhao, Yuan Ji, Zhiyu Chen, Guibin He, Junceng Guo, Yang Liu, Xinhua Zeng,
- Abstract summary: Cross-Channel Perception Learning (CCPL) strategy decomposes HER2chemical staining into Hematoxylin and DAB staining channels.<n> CCPL extracts dual-channel features from both the generated and real images and measures cross-channel correlations between nuclei and membranes.<n>Results: CCPL effectively preserves pathological features, generates high-quality virtual stained images, and provides robust support for automated pathological diagnosis using multimedia medical data.
- Score: 16.604685889132995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of digital pathology, virtual staining has become a key technology in multimedia medical information systems, offering new possibilities for the analysis and diagnosis of pathological images. However, existing H&E-to-IHC studies often overlook the cross-channel correlations between cell nuclei and cell membranes. To address this issue, we propose a novel Cross-Channel Perception Learning (CCPL) strategy. Specifically, CCPL first decomposes HER2 immunohistochemical staining into Hematoxylin and DAB staining channels, corresponding to cell nuclei and cell membranes, respectively. Using the pathology foundation model Gigapath's Tile Encoder, CCPL extracts dual-channel features from both the generated and real images and measures cross-channel correlations between nuclei and membranes. The features of the generated and real stained images, obtained through the Tile Encoder, are also used to calculate feature distillation loss, enhancing the model's feature extraction capabilities without increasing the inference burden. Additionally, CCPL performs statistical analysis on the focal optical density maps of both single channels to ensure consistency in staining distribution and intensity. Experimental results, based on quantitative metrics such as PSNR, SSIM, PCC, and FID, along with professional evaluations from pathologists, demonstrate that CCPL effectively preserves pathological features, generates high-quality virtual stained images, and provides robust support for automated pathological diagnosis using multimedia medical data.
Related papers
- U-R-VEDA: Integrating UNET, Residual Links, Edge and Dual Attention, and Vision Transformer for Accurate Semantic Segmentation of CMRs [0.0]
We propose a deep learning based enhanced UNet model, U-R-Veda, which integrates convolution transformations, vision transformer, residual links, channelattention, and spatial attention.<n>The model significantly improves the semantic segmentation of cardiac magnetic resonance (CMR) images.<n>Performance results show that U-R-Veda achieves an average accuracy of 95.2%, based on DSC.
arXiv Detail & Related papers (2025-06-25T04:10:09Z) - Controllable diffusion-based generation for multi-channel biological data [66.44042377817074]
This work proposes a unified diffusion framework for controllable generation over structured and spatial biological data.<n>We show state-of-the-art performance across both spatial and non-spatial prediction tasks, including protein imputation in IMC and gene-to-protein prediction in single-cell datasets.
arXiv Detail & Related papers (2025-06-24T00:56:21Z) - Augmentation-Based Deep Learning for Identification of Circulating Tumor Cells [0.18846515534317262]
CTCs are crucial biomarkers in liquid biopsy, offering a noninvasive tool for cancer patient management.<n>Traditionally, DEPArray-acquired digital images are manually analyzed, making the process time-consuming and prone to variability.<n>We present a Deep Learning-based classification pipeline designed to distinguish CTCs from leukocytes in blood samples.
arXiv Detail & Related papers (2025-03-05T11:39:15Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
This study develops and evaluates novel deep learning architectures that offer fast, accurate, and cost-effective methods for automatic diagnosis of cardiac diseases.<n>We propose two innovative methodologies: first, a Multi-Branch Deep Convolutional Neural Network (MBDCN) that emulates human auditory processing by utilizing diverse convolutional filter sizes and power spectrum input for enhanced feature extraction.<n>Second, a Long Short-Term Memory-Convolutional Neural (LSCN) model that integrates LSTM blocks with MBDCN to improve time-domain feature extraction.
arXiv Detail & Related papers (2024-07-15T13:02:54Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
We introduce two pathological priors: nuclear disease of cells and spatial correlation of pathological tiles.
We propose a data augmentation method that utilizes stain separation during extractor training.
We then describe the spatial relationships between the tiles using an adjacency matrix.
By integrating these two views, we designed a multi-instance framework for analyzing H&E-stained tissue images.
arXiv Detail & Related papers (2023-07-12T16:14:23Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Two-Stream Deep Feature Modelling for Automated Video Endoscopy Data
Analysis [45.19890687786009]
We propose a two-stream model for endoscopic image analysis.
Our model fuses two streams of deep feature inputs by mapping their inherent relations through a novel relational network model.
arXiv Detail & Related papers (2020-07-12T05:24:08Z) - An interpretable automated detection system for FISH-based HER2 oncogene
amplification testing in histo-pathological routine images of breast and
gastric cancer diagnostics [0.2479153065703935]
We develop an interpretable, deep learning (DL)-based pipeline which automates the evaluation of FISH images with respect to HER2 gene amplification testing.
It mimics the pathological assessment and relies on the detection and localization of interphase nuclei based on instance segmentation networks.
It localizes and classifies fluorescence signals within each nucleus with the help of image classification and object detection convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-05-25T12:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.