Augmentation-Based Deep Learning for Identification of Circulating Tumor Cells
- URL: http://arxiv.org/abs/2503.03410v1
- Date: Wed, 05 Mar 2025 11:39:15 GMT
- Title: Augmentation-Based Deep Learning for Identification of Circulating Tumor Cells
- Authors: Martina Russo, Giulia Bertolini, Vera Cappelletti, Cinzia De Marco, Serena Di Cosimo, Petra Paiè, Nadia Brancati,
- Abstract summary: CTCs are crucial biomarkers in liquid biopsy, offering a noninvasive tool for cancer patient management.<n>Traditionally, DEPArray-acquired digital images are manually analyzed, making the process time-consuming and prone to variability.<n>We present a Deep Learning-based classification pipeline designed to distinguish CTCs from leukocytes in blood samples.
- Score: 0.18846515534317262
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Circulating tumor cells (CTCs) are crucial biomarkers in liquid biopsy, offering a noninvasive tool for cancer patient management. However, their identification remains particularly challenging due to their limited number and heterogeneity. Labeling samples for contrast limits the generalization of fluorescence-based methods across different hospital datasets. Analyzing single-cell images enables detailed assessment of cell morphology, subcellular structures, and phenotypic variations, often hidden in clustered images. Developing a method based on bright-field single-cell analysis could overcome these limitations. CTCs can be isolated using an unbiased workflow combining Parsortix technology, which selects cells based on size and deformability, with DEPArray technology, enabling precise visualization and selection of single cells. Traditionally, DEPArray-acquired digital images are manually analyzed, making the process time-consuming and prone to variability. In this study, we present a Deep Learning-based classification pipeline designed to distinguish CTCs from leukocytes in blood samples, aimed to enhance diagnostic accuracy and optimize clinical workflows. Our approach employs images from the bright-field channel acquired through DEPArray technology leveraging a ResNet-based CNN. To improve model generalization, we applied three types of data augmentation techniques and incorporated fluorescence (DAPI) channel images into the training phase, allowing the network to learn additional CTC-specific features. Notably, only bright-field images have been used for testing, ensuring the model's ability to identify CTCs without relying on fluorescence markers. The proposed model achieved an F1-score of 0.798, demonstrating its capability to distinguish CTCs from leukocytes. These findings highlight the potential of DL in refining CTC analysis and advancing liquid biopsy applications.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
We propose a novel approach combining conventional classifiers, segmented images, and CNNs for the automated classification of sickle cell disease.
Our results demonstrate that using segmented images and CNN features with an SVM achieves an accuracy of 96.80%.
arXiv Detail & Related papers (2024-12-23T20:42:15Z) - Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
arXiv Detail & Related papers (2024-04-08T14:59:53Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types.
The model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample.
arXiv Detail & Related papers (2022-03-02T07:09:29Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images.
Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images.
We propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification.
arXiv Detail & Related papers (2021-08-05T09:31:46Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.