SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
- URL: http://arxiv.org/abs/2506.07603v2
- Date: Mon, 16 Jun 2025 03:31:25 GMT
- Title: SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
- Authors: Jianhui Wei, Zikai Xiao, Danyu Sun, Luqi Gong, Zongxin Yang, Zuozhu Liu, Jian Wu,
- Abstract summary: SurgBench is a unified surgical video benchmarking framework comprising a pretraining dataset, textbfSurgBench-P, and an evaluation benchmark, textbfSurgBench-E.<n>SurgBench-P covers 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E provides robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks.
- Score: 20.566701996432226
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Surgical video understanding is pivotal for enabling automated intraoperative decision-making, skill assessment, and postoperative quality improvement. However, progress in developing surgical video foundation models (FMs) remains hindered by the scarcity of large-scale, diverse datasets for pretraining and systematic evaluation. In this paper, we introduce \textbf{SurgBench}, a unified surgical video benchmarking framework comprising a pretraining dataset, \textbf{SurgBench-P}, and an evaluation benchmark, \textbf{SurgBench-E}. SurgBench offers extensive coverage of diverse surgical scenarios, with SurgBench-P encompassing 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E providing robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks. Extensive experiments reveal that existing video FMs struggle to generalize across varied surgical video analysis tasks, whereas pretraining on SurgBench-P yields substantial performance improvements and superior cross-domain generalization to unseen procedures and modalities. Our dataset and code are available upon request.
Related papers
- SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model [55.13206879750197]
SurgVidLM is the first video language model designed to address both full and fine-grained surgical video comprehension.<n>We introduce the StageFocus mechanism which is a two-stage framework performing the multi-grained, progressive understanding of surgical videos.<n> Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs in both full and fine-grained video understanding tasks.
arXiv Detail & Related papers (2025-06-22T02:16:18Z) - Large-scale Self-supervised Video Foundation Model for Intelligent Surgery [27.418249899272155]
We introduce the first video-level surgical pre-training framework that enables jointtemporal representation learning from large-scale surgical video data.<n>We propose SurgVISTA, a reconstruction-based pre-training method that captures spatial structures and intricate temporal dynamics.<n>In experiments, SurgVISTA consistently outperforms both natural- and surgical-domain pre-trained models.
arXiv Detail & Related papers (2025-06-03T09:42:54Z) - SurgVLM: A Large Vision-Language Model and Systematic Evaluation Benchmark for Surgical Intelligence [72.10889173696928]
We propose SurgVLM, one of the first large vision-language foundation models for surgical intelligence.<n>We construct a large-scale multimodal surgical database, SurgVLM-DB, spanning more than 16 surgical types and 18 anatomical structures.<n>Building upon this comprehensive dataset, we propose SurgVLM, which is built upon Qwen2.5-VL, and undergoes instruction tuning to 10+ surgical tasks.
arXiv Detail & Related papers (2025-06-03T07:44:41Z) - Surgical Foundation Model Leveraging Compression and Entropy Maximization for Image-Guided Surgical Assistance [50.486523249499115]
Real-time video understanding is critical to guide procedures in minimally invasive surgery (MIS)<n>We propose Compress-to-Explore (C2E), a novel self-supervised framework to learn compact, informative representations from surgical videos.<n>C2E uses entropy-maximizing decoders to compress images while preserving clinically relevant details, improving encoder performance without labeled data.
arXiv Detail & Related papers (2025-05-16T14:02:24Z) - OphCLIP: Hierarchical Retrieval-Augmented Learning for Ophthalmic Surgical Video-Language Pretraining [60.75854609803651]
OphCLIP is a hierarchical retrieval-augmented vision-language pretraining framework for ophthalmic surgical workflow understanding.<n>OphCLIP learns both fine-grained and long-term visual representations by aligning short video clips with detailed narrative descriptions and full videos with structured titles.<n>Our OphCLIP also designs a retrieval-augmented pretraining framework to leverage the underexplored large-scale silent surgical procedure videos.
arXiv Detail & Related papers (2024-11-23T02:53:08Z) - Thoracic Surgery Video Analysis for Surgical Phase Recognition [0.08706730566331035]
We analyse and evaluate both frame-based and video clipping-based phase recognition on thoracic surgery dataset consisting of 11 classes of phases.
We show that Masked Video Distillation(MVD) exhibits superior performance, achieving a top-1 accuracy of 72.9%, compared to 52.31% achieved by ImageNet ViT.
arXiv Detail & Related papers (2024-06-13T14:47:57Z) - General surgery vision transformer: A video pre-trained foundation model for general surgery [2.576958141988598]
We open-source the largest dataset of general surgery videos to-date, consisting of 680 hours of surgical videos.
We propose a technique for video pre-training a general surgery vision transformer (GSViT) on surgical videos based on forward video prediction.
arXiv Detail & Related papers (2024-03-09T16:02:46Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in Laparoscopic and Robotic Surgery [47.47211257890948]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.<n>We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.<n>Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose Estimation of Surgical Instruments [64.59698930334012]
We present a multi-camera capture setup consisting of static and head-mounted cameras.<n>Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.<n>Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Know your sensORs $\unicode{x2013}$ A Modality Study For Surgical Action
Classification [39.546197658791]
The medical community seeks to leverage this wealth of data to develop automated methods to advance interventional care, lower costs, and improve patient outcomes.
Existing datasets from OR room cameras are thus far limited in size or modalities acquired, leaving it unclear which sensor modalities are best suited for tasks such as recognizing surgical action from videos.
This study demonstrates that surgical action recognition performance can vary depending on the image modalities used.
arXiv Detail & Related papers (2022-03-16T15:01:17Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.