Event-Priori-Based Vision-Language Model for Efficient Visual Understanding
- URL: http://arxiv.org/abs/2506.07627v1
- Date: Mon, 09 Jun 2025 10:45:35 GMT
- Title: Event-Priori-Based Vision-Language Model for Efficient Visual Understanding
- Authors: Haotong Qin, Cheng Hu, Michele Magno,
- Abstract summary: Event-Priori-Based Vision-Language Model (EP-VLM) improves VLM inference efficiency.<n>EP-VLM uses motion priors derived from dynamic event vision to enhance VLM efficiency.
- Score: 13.540340702321911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM)-based Vision-Language Models (VLMs) have substantially extended the boundaries of visual understanding capabilities. However, their high computational demands hinder deployment on resource-constrained edge devices. A key source of inefficiency stems from the VLM's need to process dense and redundant visual information. Visual inputs contain significant regions irrelevant to text semantics, rendering the associated computations ineffective for inference. This paper introduces a novel Event-Priori-Based Vision-Language Model, termed EP-VLM. Its core contribution is a novel mechanism leveraging motion priors derived from dynamic event vision to enhance VLM efficiency. Inspired by human visual cognition, EP-VLM first employs event data to guide the patch-wise sparsification of RGB visual inputs, progressively concentrating VLM computation on salient regions of the visual input. Subsequently, we construct a position-preserving tokenization strategy for the visual encoder within the VLM architecture. This strategy processes the event-guided, unstructured, sparse visual input while accurately preserving positional understanding within the visual input. Experimental results demonstrate that EP-VLM achieves significant efficiency improvements while maintaining nearly lossless accuracy compared to baseline models from the Qwen2-VL series. For instance, against the original Qwen2-VL-2B, EP-VLM achieves 50% FLOPs savings while retaining 98% of the original accuracy on the RealWorldQA dataset. This work demonstrates the potential of event-based vision priors for improving VLM inference efficiency, paving the way for creating more efficient and deployable VLMs for sustainable visual understanding at the edge.
Related papers
- VLMInferSlow: Evaluating the Efficiency Robustness of Large Vision-Language Models as a Service [11.715844075786958]
VLMInferSlow is a novel approach for evaluating VLM efficiency robustness in a realistic black-box setting.<n>We show that VLMInferSlow generates adversarial images with imperceptible perturbations, increasing the computational cost by up to 128.47%.
arXiv Detail & Related papers (2025-06-18T08:57:17Z) - DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)<n>Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.<n>Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - Semantic-Clipping: Efficient Vision-Language Modeling with Semantic-Guidedd Visual Selection [53.558449071113245]
Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM)<n>Recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model.<n>We propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details.
arXiv Detail & Related papers (2025-03-14T18:33:31Z) - Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing [30.94114120434789]
We propose KVTP (Keyframe-oriented Vision Token MME), a novel framework that overcomes the token pruning and selection drawbacks.<n> KVTP effectively retains essential contextual information while significantly reducing redundant computation.
arXiv Detail & Related papers (2025-03-13T17:47:52Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision.<n>We propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations.<n>We show that OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench.
arXiv Detail & Related papers (2024-12-12T18:55:18Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
A promising approach to accelerating large vision-language models (VLMs) is using partial information, such as attention maps from specific layers, to assess token importance and prune less essential tokens.<n>Our study reveals three key insights: (i) Partial attention information is insufficient for accurately identifying critical visual tokens, resulting in suboptimal performance, especially at low token retention ratios; (ii) Global attention information, such as the attention map aggregated across all layers, more effectively preserves essential tokens and maintains comparable performance under aggressive pruning; and (iii) The global attention map aggregated from a small VLM closely resembles that of a large VLM,
arXiv Detail & Related papers (2024-12-04T13:56:44Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - A-VL: Adaptive Attention for Large Vision-Language Models [10.027871150748956]
Large Vision-Language Model (LVLM) integrates computer vision and natural language processing techniques, offering substantial application potential.<n>Current adaptive attention methods significantly reduce the memory requirements of Transformer-based language models.<n>We observe that LVLMs generate responses from both remote image tokens and local text tokens, and different modalities have different attention patterns.<n>We develop A-VL, a plug-and-play adaptive attention tailored for LVLM inference.
arXiv Detail & Related papers (2024-09-23T09:22:59Z) - Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning [59.13366859237086]
Current solutions for efficiently constructing large vision-language (VL) models follow a two-step paradigm.
We consider visual prompts as additional knowledge that facilitates language models in addressing tasks associated with visual information.
We introduce a novel approach, wherein visual prompts are memoryd with the weights of FFN for visual knowledge injection.
arXiv Detail & Related papers (2024-05-09T08:23:20Z) - Adapting Pre-trained Language Models to Vision-Language Tasks via
Dynamic Visual Prompting [83.21164539349273]
Pre-trained language models (PLMs) have played an increasing role in multimedia research.
In this paper, we focus on exploring PLMs as a stand-alone model for vision-language reasoning tasks.
We propose a novel transfer learning approach for PLMs, termed Dynamic Visual Prompting (DVP)
arXiv Detail & Related papers (2023-06-01T07:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.