論文の概要: HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition
- arxiv url: http://arxiv.org/abs/2506.07637v1
- Date: Mon, 09 Jun 2025 11:03:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.922605
- Title: HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition
- Title(参考訳): HieraEdgeNet: 自動花粉認識のためのマルチスケールエッジ拡張フレームワーク
- Authors: Yuchong Long, Wen Sun, Ningxiao Sun, Wenxiao Wang, Chao Li, Shan Yin,
- Abstract要約: 自動花粉認識のためのマルチスケールエッジエンハンスメントフレームワークであるHieraEdgeNetを紹介する。
フレームワークの中核となる革新は3つの相乗的モジュールの導入である。
大規模なデータセットでは、HieraEdgeNetは平均平均精度(mAP@.5)が0.9501に達し、最先端のベースラインモデルを大幅に上回っている。
- 参考スコア(独自算出の注目度): 10.159338629617919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated pollen recognition is vital to paleoclimatology, biodiversity monitoring, and public health, yet conventional methods are hampered by inefficiency and subjectivity. Existing deep learning models often struggle to achieve the requisite localization accuracy for microscopic targets like pollen, which are characterized by their minute size, indistinct edges, and complex backgrounds. To overcome this limitation, we introduce HieraEdgeNet, a multi-scale edge-enhancement framework. The framework's core innovation is the introduction of three synergistic modules: the Hierarchical Edge Module (HEM), which explicitly extracts a multi-scale pyramid of edge features that corresponds to the semantic hierarchy at early network stages; the Synergistic Edge Fusion (SEF) module, for deeply fusing these edge priors with semantic information at each respective scale; and the Cross Stage Partial Omni-Kernel Module (CSPOKM), which maximally refines the most detail-rich feature layers using an Omni-Kernel operator - comprising anisotropic large-kernel convolutions and mixed-domain attention - all within a computationally efficient Cross-Stage Partial (CSP) framework. On a large-scale dataset comprising 120 pollen classes, HieraEdgeNet achieves a mean Average Precision (mAP@.5) of 0.9501, significantly outperforming state-of-the-art baseline models such as YOLOv12n and RT-DETR. Furthermore, qualitative analysis confirms that our approach generates feature representations that are more precisely focused on object boundaries. By systematically integrating edge information, HieraEdgeNet provides a robust and powerful solution for high-precision, high-efficiency automated detection of microscopic objects.
- Abstract(参考訳): 花粉の自動認識は、古気候学、生物多様性モニタリング、公衆衛生に不可欠であるが、従来の方法は非効率性と主観性によって妨げられている。
既存のディープラーニングモデルは、花粉のような微細な標的に対して、必要な位置決め精度を達成するのに苦労することが多く、それはその微細なサイズ、不明瞭なエッジ、複雑な背景によって特徴づけられる。
この制限を克服するために、マルチスケールエッジエンハンスメントフレームワークであるHieraEdgeNetを紹介します。
階層的エッジモジュール(HEM)は、初期ネットワークのセマンティック階層に対応するエッジ機能のマルチスケールピラミッドを明示的に抽出するものであり、Synergistic Edge Fusion(SEF)モジュールは、これらのエッジを各規模でセマンティック情報と深く融合させる。
120の花粉クラスからなる大規模なデータセットでは、HieraEdgeNetは平均平均精度(mAP@.5)が0.9501に達し、YOLOv12nやRT-DETRのような最先端のベースラインモデルよりも大幅に優れている。
さらに, 定性的解析により, 対象境界により正確に焦点を絞った特徴表現が生成されることを確認した。
エッジ情報を体系的に統合することにより、HieraEdgeNetは、高精度で高効率な顕微鏡オブジェクトの自動検出のための堅牢で強力なソリューションを提供する。
関連論文リスト
- MNet-SAt: A Multiscale Network with Spatial-enhanced Attention for Segmentation of Polyps in Colonoscopy [0.10995326465245926]
大腸内視鏡画像におけるポリプセグメンテーションのためのMNetSAt(Multiscale Network with spatial-enhanced Attention)を提案する。
このフレームワークには、エッジガイド機能強化(EGFE)、マルチスケール機能集約(MSFA)、空間拡張注意(SEAt)の4つの重要なモジュールが含まれている。
我々は,Kvasir-SEGデータセットとCVC-ClinicDBデータセット上でMNet-SAtを評価し,96.61%,98.60%のDice類似度係数をそれぞれ達成した。
論文 参考訳(メタデータ) (2024-12-27T05:17:29Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - Pruning Deep Convolutional Neural Network Using Conditional Mutual Information [10.302118493842647]
畳み込みニューラルネットワーク(CNN)は、画像分類タスクにおいて高い性能を達成するが、リソース制限ハードウェアへのデプロイは困難である。
本稿では,各層における最も情報性の高い特徴を識別し,選択的に保持するCNNに対して,構造化されたフィルタ解析手法を提案する。
論文 参考訳(メタデータ) (2024-11-27T18:23:59Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Multilateral Cascading Network for Semantic Segmentation of Large-Scale Outdoor Point Clouds [6.253217784798542]
Multilateral Cascading Network (MCNet)はこの課題に対処するために設計された。
MCNetは、Multilateral Cascading Attention Enhancement (MCAE)モジュールとPoint Cross Stage partial (P-CSP)モジュールの2つの主要なコンポーネントから構成されている。
その結果,mIoU全体では2.1%,小さめの対象カテゴリーでは平均15.9%の改善が得られた。
論文 参考訳(メタデータ) (2024-09-21T02:23:01Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [38.11584888416297]
本研究では,ポリプセグメンテーションのためのエッジ対応特徴集約ネットワーク(EFA-Net)を提案する。
EFA-Netは、ポリプセグメンテーションの性能を高めるために、クロスレベルとマルチスケールの機能を完全に活用することができる。
広く採用されている5つの大腸内視鏡データセットの実験結果から,我々のEFA-Netは,一般化と有効性の観点から,最先端のポリプセグメンテーション法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-19T11:09:38Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Adaptive Linear Span Network for Object Skeleton Detection [56.78705071830965]
本研究では,適応線形スパンネットワーク(AdaLSN)を提案する。
AdaLSNは、精度とレイテンシのトレードオフを著しく高めることで、その汎用性を裏付ける。
また、エッジ検出や道路抽出といったイメージ・ツー・マスクのタスクに適用可能であることも示している。
論文 参考訳(メタデータ) (2020-11-08T12:51:14Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
本稿では,有能な物体検出における進行的融合を改善するために,新しいクロス層特徴ピラミッドネットワークを提案する。
レイヤごとの分散機能は、他のすべてのレイヤからセマンティクスと健全な詳細の両方を同時に所有し、重要な情報の損失を減らします。
論文 参考訳(メタデータ) (2020-02-25T14:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。