Language Embedding Meets Dynamic Graph: A New Exploration for Neural Architecture Representation Learning
- URL: http://arxiv.org/abs/2506.07735v1
- Date: Mon, 09 Jun 2025 13:20:02 GMT
- Title: Language Embedding Meets Dynamic Graph: A New Exploration for Neural Architecture Representation Learning
- Authors: Haizhao Jing, Haokui Zhang, Zhenhao Shang, Rong Xiao, Peng Wang, Yanning Zhang,
- Abstract summary: We introduce LeDG-Former, an innovative framework that addresses limitations through the synergistic integration of language-based semantic embedding and dynamic graph representation learning.<n>Specifically, we propose a language embedding framework where both neural architectures and hardware platform specifications are projected into a unified semantic space.<n>Our framework achieves superior performance on the cell-structured NAS-Bench-101 and NAS-Bench-201 datasets.
- Score: 38.323486764309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Representation Learning aims to transform network models into feature representations for predicting network attributes, playing a crucial role in deploying and designing networks for real-world applications. Recently, inspired by the success of transformers, transformer-based models integrated with Graph Neural Networks (GNNs) have achieved significant progress in representation learning. However, current methods still have some limitations. First, existing methods overlook hardware attribute information, which conflicts with the current trend of diversified deep learning hardware and limits the practical applicability of models. Second, current encoding approaches rely on static adjacency matrices to represent topological structures, failing to capture the structural differences between computational nodes, which ultimately compromises encoding effectiveness. In this paper, we introduce LeDG-Former, an innovative framework that addresses these limitations through the synergistic integration of language-based semantic embedding and dynamic graph representation learning. Specifically, inspired by large language models (LLMs), we propose a language embedding framework where both neural architectures and hardware platform specifications are projected into a unified semantic space through tokenization and LLM processing, enabling zero-shot prediction across different hardware platforms for the first time. Then, we propose a dynamic graph-based transformer for modeling neural architectures, resulting in improved neural architecture modeling performance. On the NNLQP benchmark, LeDG-Former surpasses previous methods, establishing a new SOTA while demonstrating the first successful cross-hardware latency prediction capability. Furthermore, our framework achieves superior performance on the cell-structured NAS-Bench-101 and NAS-Bench-201 datasets.
Related papers
- Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures [49.19753720526998]
We derive theoretical scaling laws for neural network performance on synthetic datasets.<n>We validate that convolutional networks, whose structure aligns with that of the generative process through locality and weight sharing, enjoy a faster scaling of performance.<n>This finding clarifies the architectural biases underlying neural scaling laws and highlights how representation learning is shaped by the interaction between model architecture and the statistical properties of data.
arXiv Detail & Related papers (2025-05-11T17:44:14Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Advancing Neural Network Performance through Emergence-Promoting Initialization Scheme [0.0]
Emergence in machine learning refers to the spontaneous appearance of capabilities that arise from the scale and structure of training data.<n>We introduce a novel yet straightforward neural network initialization scheme that aims at achieving greater potential for emergence.<n>We demonstrate substantial improvements in both model accuracy and training speed, with and without batch normalization.
arXiv Detail & Related papers (2024-07-26T18:56:47Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - NAR-Former V2: Rethinking Transformer for Universal Neural Network
Representation Learning [25.197394237526865]
We propose a modified Transformer-based universal neural network representation learning model NAR-Former V2.
Specifically, we take the network as a graph and design a straightforward tokenizer to encode the network into a sequence.
We incorporate the inductive representation learning capability of GNN into Transformer, enabling Transformer to generalize better when encountering unseen architecture.
arXiv Detail & Related papers (2023-06-19T09:11:04Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.<n>Our approach is capable of encoding neural networks in a model zoo of mixed architecture.<n>We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Neural Architecture Optimization with Graph VAE [21.126140965779534]
We propose an efficient NAS approach to optimize network architectures in a continuous space.
The framework jointly learns four components: the encoder, the performance predictor, the complexity predictor and the decoder.
arXiv Detail & Related papers (2020-06-18T07:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.