Accelerating Constrained Sampling: A Large Deviations Approach
- URL: http://arxiv.org/abs/2506.07816v2
- Date: Sun, 13 Jul 2025 18:27:53 GMT
- Title: Accelerating Constrained Sampling: A Large Deviations Approach
- Authors: Yingli Wang, Changwei Tu, Xiaoyu Wang, Lingjiong Zhu,
- Abstract summary: This work focuses on the long-time behavior of SRNLMC, where a skew-symmetric matrix is added to RLD.<n>By explicitly characterizing the rate functions, we show that this choice of the skew-symmetric matrix accelerates the convergence to the target distribution.<n>Experiments for SRNLMC based on the proposed skew-symmetric matrix show superior performance.
- Score: 11.382163777108385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of sampling a target probability distribution on a constrained domain arises in many applications including machine learning. For constrained sampling, various Langevin algorithms such as projected Langevin Monte Carlo (PLMC) based on the discretization of reflected Langevin dynamics (RLD) and more generally skew-reflected non-reversible Langevin Monte Carlo (SRNLMC) based on the discretization of skew-reflected non-reversible Langevin dynamics (SRNLD) have been proposed and studied in the literature. This work focuses on the long-time behavior of SRNLD, where a skew-symmetric matrix is added to RLD. Although acceleration for SRNLD has been studied, it is not clear how one should design the skew-symmetric matrix in the dynamics to achieve good performance in practice. We establish a large deviation principle (LDP) for the empirical measure of SRNLD when the skew-symmetric matrix is chosen such that its product with the inward unit normal vector field on the boundary is zero. By explicitly characterizing the rate functions, we show that this choice of the skew-symmetric matrix accelerates the convergence to the target distribution compared to RLD and reduces the asymptotic variance. Numerical experiments for SRNLMC based on the proposed skew-symmetric matrix show superior performance, which validate the theoretical findings from the large deviations theory.
Related papers
- Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent [13.27202712518471]
This paper proposes and analyzes a gradient-type algorithm based on Burer-Monteiro factorization, called the Asymmetric Descented Gradient (APGD)
arXiv Detail & Related papers (2025-04-28T07:13:23Z) - Non-Reversible Langevin Algorithms for Constrained Sampling [13.472207533177151]
We consider the constrained sampling problem where the goal is to sample from a target distribution on a constrained domain.<n>We propose skew-reflected non-reversible Langevin dynamics (SRNLD)<n>We obtain non-asymptotic convergence rate of SRNLD to the target distribution in both total variation and 1-Wasserstein distances.
arXiv Detail & Related papers (2025-01-20T21:04:29Z) - Deep Variational Sequential Monte Carlo for High-Dimensional Observations [39.455729393887786]
This work introduces a differentiable particle filter that leverages the unsupervised variational SMC objective to parameterize the proposal and transition distributions with a neural network.<n> Experimental results demonstrate that our approach outperforms established baselines in tracking the challenging Lorenz attractor from high-dimensional and partial observations.
arXiv Detail & Related papers (2025-01-10T14:10:19Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
We extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates.
We also study time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result.
arXiv Detail & Related papers (2023-12-02T13:01:29Z) - Weighted Riesz Particles [0.0]
We consider the target distribution as a mapping where the infinite-dimensional space of the parameters consists of a number of deterministic submanifolds.
We study the properties of the point, called Riesz, and embed it into sequential MCMC.
We find that there will be higher acceptance rates with fewer evaluations.
arXiv Detail & Related papers (2023-12-01T14:36:46Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning Discretized Neural Networks under Ricci Flow [48.47315844022283]
We study Discretized Neural Networks (DNNs) composed of low-precision weights and activations.<n>DNNs suffer from either infinite or zero gradients due to the non-differentiable discrete function during training.
arXiv Detail & Related papers (2023-02-07T10:51:53Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Learning Generative Prior with Latent Space Sparsity Constraints [25.213673771175692]
It has been argued that the distribution of natural images do not lie in a single manifold but rather lie in a union of several submanifolds.
We propose a sparsity-driven latent space sampling (SDLSS) framework and develop a proximal meta-learning (PML) algorithm to enforce sparsity in the latent space.
The results demonstrate that for a higher degree of compression, the SDLSS method is more efficient than the state-of-the-art method.
arXiv Detail & Related papers (2021-05-25T14:12:04Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Non-Convex Optimization via Non-Reversible Stochastic Gradient Langevin
Dynamics [27.097121544378528]
Gradient Langevin Dynamics (SGLD) is a powerful algorithm for optimizing a non- objective gradient.
NSGLD is based on discretization of the non-reversible diffusion.
arXiv Detail & Related papers (2020-04-06T17:11:03Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
Low-rank Multi-view Subspace Learning has shown great potential in cross-view classification in recent years.
Existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously.
We propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy.
arXiv Detail & Related papers (2020-03-22T03:57:38Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.