Improving Large Language Models with Concept-Aware Fine-Tuning
- URL: http://arxiv.org/abs/2506.07833v2
- Date: Fri, 13 Jun 2025 17:24:38 GMT
- Title: Improving Large Language Models with Concept-Aware Fine-Tuning
- Authors: Michael K. Chen, Xikun Zhang, Jiaxing Huang, Dacheng Tao,
- Abstract summary: Concept-Aware Fine-Tuning (CAFT) is a novel multi-token training method for large language models (LLMs)<n>CAFT enables the learning of sequences that span multiple tokens, fostering stronger concept-aware learning.<n>Experiments demonstrate significant improvements compared to conventional next-token finetuning methods.
- Score: 55.59287380665864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm
Related papers
- Your LLM Knows the Future: Uncovering Its Multi-Token Prediction Potential [12.719829360337833]
We propose a novel framework that leverages the inherent knowledge of vanilla autoregressive language models about future tokens.<n>Our method achieves significant speedups through supervised fine-tuning on pretrained models.
arXiv Detail & Related papers (2025-07-16T02:31:40Z) - From Bytes to Ideas: Language Modeling with Autoregressive U-Nets [49.16552366851748]
Tokenization imposes a fixed granularity on the input text.<n>We introduce an autoregressive U-Net that learns to embed its own tokens as it trains.
arXiv Detail & Related papers (2025-06-17T17:55:11Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning [44.84219266082269]
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data.<n>We propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens.
arXiv Detail & Related papers (2025-02-05T15:33:00Z) - Large Concept Models: Language Modeling in a Sentence Representation Space [62.73366944266477]
We present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept.<n> Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow.<n>We show that our model exhibits impressive zero-shot generalization performance to many languages.
arXiv Detail & Related papers (2024-12-11T23:36:20Z) - FIRP: Faster LLM inference via future intermediate representation prediction [54.897493351694195]
FIRP generates multiple tokens instead of one at each decoding step.
We conduct extensive experiments, showing a speedup ratio of 1.9x-3x in several models and datasets.
arXiv Detail & Related papers (2024-10-27T15:53:49Z) - SEP: Self-Enhanced Prompt Tuning for Visual-Language Model [93.94454894142413]
We introduce a novel approach named Self-Enhanced Prompt Tuning (SEP)
SEP explicitly incorporates discriminative prior knowledge to enhance both textual-level and visual-level embeddings.
Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning.
arXiv Detail & Related papers (2024-05-24T13:35:56Z) - Self-Evolution Learning for Discriminative Language Model Pretraining [103.57103957631067]
Self-Evolution learning (SE) is a simple and effective token masking and learning method.
SE focuses on learning the informative yet under-explored tokens and adaptively regularizes the training by introducing a novel Token-specific Label Smoothing approach.
arXiv Detail & Related papers (2023-05-24T16:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.