Broadband and high-precision two-level system loss measurement using superconducting multi-wave resonators
- URL: http://arxiv.org/abs/2506.08130v1
- Date: Mon, 09 Jun 2025 18:33:46 GMT
- Title: Broadband and high-precision two-level system loss measurement using superconducting multi-wave resonators
- Authors: Cliff Chen, Shahriar Aghaeimeibodi, Yuki Sato, Matthew H. Matheny, Oskar Painter, Jiansong Gao,
- Abstract summary: Two-level systems (TLS) are known to be a dominant source of dissipation and decoherence in superconducting qubits.<n> accurately measuring TLS-induced loss in a resonator in the quantum regime is challenging due to low signal-to-noise ratio (SNR) and the temporal fluctuations of the TLS.<n>We develop a multi-wave resonator device that extends the resonator length from a standard quarter-wave $lambda/4$ to $Nlambda/4$ where $N = 37$ at 6GHz.
- Score: 0.29687381456163997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-level systems (TLS) are known to be a dominant source of dissipation and decoherence in superconducting qubits. Superconducting resonators provide a convenient way to study TLS-induced loss due to easier design and fabrication in comparison to devices that include non-linear elements. However, accurately measuring TLS-induced loss in a resonator in the quantum regime is challenging due to low signal-to-noise ratio (SNR) and the temporal fluctuations of the TLS, leading to uncertainties of 30% or more. To address these limitations, we develop a multi-wave resonator device that extends the resonator length from a standard quarter-wave $\lambda/4$ to $N\lambda/4$ where $N = 37$ at 6GHz. This design provides two key advantages: the TLS-induced fluctuations are reduced by a factor of $\sqrt{N}$ due to spatial averaging over an increased number of independent TLS, and the measurement SNR for a given intra-resonator energy density improves by a factor of $\sqrt{N}$. The multi-wave resonator also has fundamental and harmonic resonances that allow one to study the frequency dependence of TLS-induced loss. In this work we fabricate both multi-wave and quarter-wave coplanar waveguide resonators formed from thin-film aluminum on a silicon substrate, and characterize their TLS properties at both 10mK and 200mK. Our results show that the power-dependent TLS-induced loss measured from both types of resonators agree well, with the multi-wave resonators achieving a five-fold reduction in measurement uncertainty due to TLS fluctuations, down to 5%. The $N\lambda/4$ resonator also provides a measure of the fully unsaturated TLS-induced loss due to the improved measurement SNR at low intra-resonator energy densities. Finally, measurements across seven harmonic resonances of the $N\lambda/4$ resonator between 4GHz - 6.5GHz reveals no frequency dependence in the TLS-induced loss over this range.
Related papers
- Loss tangent fluctuations due to two-level systems in superconducting microwave resonators [32.588882127567395]
Superconducting microwave resonators are critical to quantum computing and sensing technologies.<n>We investigate large temporal fluctuations of $Q_i$ at low powers over periods of 12 to 16 hours.
arXiv Detail & Related papers (2024-12-07T00:57:23Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Intermodulation spectroscopy and the nonlinear response of two-level
systems in superconducting coplanar waveguide resonators [0.0]
Two-level system (TLS) loss is limiting the coherence of superconducting quantum circuits.
We observe frequency mixing due to this nonlinearity by applying a two-tone drive to a coplanar waveguide resonator.
Using harmonic balance reconstruction, we recover the nonlinear parameters of the device-TLS interaction.
arXiv Detail & Related papers (2024-02-16T15:57:57Z) - Annealing reduces Si$_3$N$_4$ microwave-frequency dielectric loss in superconducting resonators [0.0]
Microwave-frequency devices rely on silicon nitride (Si$_3$N$_4$) for sensing, signal processing, and quantum communication.
We measure the cryogenic loss of either as-deposited or high-temperature stoichiometric Si$_3$N$_4$ as a function of drive strength and temperature.
arXiv Detail & Related papers (2023-12-21T00:44:46Z) - Low-loss Millimeter-wave Resonators with an Improved Coupling Structure [39.76747788992184]
Millimeter-wave superconducting resonators are a useful tool for studying quantum device coherence in a new frequency domain.
We develop and characterize a tapered transition structure coupling a rectangular waveguide to a planar slotline waveguide with better than 0.5 dB efficiency over 14 GHz.
Having decoupled the resonators from radiative losses, we consistently achieve single-photon quality factors above $105$, with a two-level-system loss limit above $106$.
arXiv Detail & Related papers (2023-11-03T02:26:44Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Dual-laser self-injection locking to an integrated microresonator [93.17495788476688]
We experimentally demonstrate the dual-laser SIL of two multifrequency laser diodes to different modes of an integrated Si$_3$N$_4$ microresonator.
Locking both lasers to the same mode results in a simultaneous frequency and phase stabilization and coherent addition of their outputs.
arXiv Detail & Related papers (2022-01-06T16:25:15Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
Two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices.
We show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons.
Results may shed new light on the low temperature characteristics of amorphous solids.
arXiv Detail & Related papers (2021-10-20T19:42:22Z) - Anomalous Loss Reduction Below Two-Level System Saturation in Aluminum
Superconducting Resonators [0.0]
capacitively-coupled aluminum half-wavelength coplanar waveguide resonators are investigated.
Two-level systems (TLS) become the dominant source of loss in the few-photon and low temperature regime.
arXiv Detail & Related papers (2021-09-24T04:29:21Z) - Oxygen Vacancies in Niobium Pentoxide as a Source of Two-Level System Losses in Superconducting Niobium [41.94295877935867]
oxygen vacancies in the niobium pentoxide drive two-level system (TLS) losses.
We identify a major source of quantum decoherence in three-dimensional superconducting radio-frequency (SRF) resonators and two-dimensional transmon qubits composed of oxidized niobium.
arXiv Detail & Related papers (2021-08-30T16:24:07Z) - Non-Markovian Effects of Two-Level Systems in a Niobium Coaxial
Resonator with a Single-Photon Lifetime of 10 ms [0.0]
Coherence of two-level systems (TLS) has to be considered to accurately describe the ring-down dynamics of a coaxial quarter-wave resonator.
We observe long-term effects on the cavity decay due to coherent elastic scattering between the resonator field and the TLS.
This model provides an accurate prediction of the internal quality factor's temperature dependence.
arXiv Detail & Related papers (2021-02-19T16:36:18Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Thermal coupling and effect of subharmonic synchronization in a system
of two VO2 based oscillators [55.41644538483948]
We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices.
The effective action radius RTC of coupling depends both on the total energy released during switching and on the average power.
In the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by 10 %.
The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
arXiv Detail & Related papers (2020-01-06T03:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.