Reinforcement Learning from Human Feedback with High-Confidence Safety Constraints
- URL: http://arxiv.org/abs/2506.08266v1
- Date: Mon, 09 Jun 2025 22:03:56 GMT
- Title: Reinforcement Learning from Human Feedback with High-Confidence Safety Constraints
- Authors: Yaswanth Chittepu, Blossom Metevier, Will Schwarzer, Austin Hoag, Scott Niekum, Philip S. Thomas,
- Abstract summary: We propose High-Confidence Safe Reinforcement Learning from Human Feedback to align language models with human preferences.<n>We show that HC-RLHF produces safe models with high probability and can improve harmlessness and helpfulness compared to previous methods.
- Score: 24.881874024528276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing approaches to language model alignment often treat safety as a tradeoff against helpfulness, which can lead to unacceptable responses in sensitive domains. To ensure reliable performance in such settings, we propose High-Confidence Safe Reinforcement Learning from Human Feedback (HC-RLHF), a method that provides high-confidence safety guarantees while maximizing helpfulness. Similar to previous methods, HC-RLHF explicitly decouples human preferences into helpfulness and harmlessness (safety), which are learned by training a reward model and a cost model, respectively. It then employs a two-step process to find safe solutions. In the first step, it optimizes the reward function under an intentionally pessimistic version of the cost constraint. In the second step, the trained model undergoes a safety test to verify whether its performance stays within an upper-confidence bound of the actual cost constraint. We provide a theoretical analysis of HC-RLHF, including proof that it will not return an unsafe solution with a probability greater than a user-specified threshold. For our empirical analysis, we apply HC-RLHF to align three different language models (Qwen2-1.5B, Qwen2.5-3B, and LLaMa3.2-3B) with human preferences. Our results demonstrate that HC-RLHF produces safe models with high probability and can improve harmlessness and helpfulness compared to previous methods.
Related papers
- SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law [91.33824439029533]
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety.<n>It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training.<n>We further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B.
arXiv Detail & Related papers (2025-07-24T16:49:19Z) - Safe RLHF-V: Safe Reinforcement Learning from Multi-modal Human Feedback [34.01716144973483]
Multimodal large language models (MLLMs) are essential for building general-purpose AI assistants.<n>How can we ensure safety alignment of MLLMs to prevent undesired behaviors?<n>In this work, we present the first exploration of the Safe RLHF-V -- the first multimodal safety alignment framework.
arXiv Detail & Related papers (2025-03-22T07:40:20Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.<n>However, ensuring the safety of LLMs during fine-tuning remains a critical concern.<n>We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.<n>DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence.
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem.
We do so by pre-optimizing a smooth and convex dual function that has a closed form.
Our strategy leads to two practical algorithms in model-based and preference-based settings.
arXiv Detail & Related papers (2024-05-29T22:12:52Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
"Shielding" is a popular technique to enforce safety inReinforcement Learning (RL)
We propose a new permissibility-based framework to deal with safety and shield construction.
arXiv Detail & Related papers (2024-05-29T18:00:21Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
We focus on two prevalent methods used to align large language models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods.
Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement.
arXiv Detail & Related papers (2023-10-25T16:52:00Z) - Safe RLHF: Safe Reinforcement Learning from Human Feedback [16.69413517494355]
We propose Safe Reinforcement Learning from Human Feedback (Safe RLHF), a novel algorithm for human value alignment.
Safe RLHF explicitly decouples human preferences regarding helpfulness and harmlessness, effectively avoiding the crowdworkers' confusion about the tension.
We demonstrate a superior ability to mitigate harmful responses while enhancing model performance.
arXiv Detail & Related papers (2023-10-19T14:22:03Z) - Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence
Scores from Language Models Fine-Tuned with Human Feedback [91.22679548111127]
A trustworthy real-world prediction system should produce well-calibrated confidence scores.
We show that verbalized confidences emitted as output tokens are typically better-calibrated than the model's conditional probabilities.
arXiv Detail & Related papers (2023-05-24T10:12:33Z) - Neural Network Repair with Reachability Analysis [10.384532888747993]
Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control.
This research proposes a framework to repair unsafe DNNs in safety-critical systems with reachability analysis.
arXiv Detail & Related papers (2021-08-09T17:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.