SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
- URL: http://arxiv.org/abs/2507.18576v3
- Date: Thu, 07 Aug 2025 08:02:42 GMT
- Title: SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
- Authors: Shanghai AI Lab, :, Yicheng Bao, Guanxu Chen, Mingkang Chen, Yunhao Chen, Chiyu Chen, Lingjie Chen, Sirui Chen, Xinquan Chen, Jie Cheng, Yu Cheng, Dengke Deng, Yizhuo Ding, Dan Ding, Xiaoshan Ding, Yi Ding, Zhichen Dong, Lingxiao Du, Yuyu Fan, Xinshun Feng, Yanwei Fu, Yuxuan Gao, Ruijun Ge, Tianle Gu, Lujun Gui, Jiaxuan Guo, Qianxi He, Yuenan Hou, Xuhao Hu, Hong Huang, Kaichen Huang, Shiyang Huang, Yuxian Jiang, Shanzhe Lei, Jie Li, Lijun Li, Hao Li, Juncheng Li, Xiangtian Li, Yafu Li, Lingyu Li, Xueyan Li, Haotian Liang, Dongrui Liu, Qihua Liu, Zhixuan Liu, Bangwei Liu, Huacan Liu, Yuexiao Liu, Zongkai Liu, Chaochao Lu, Yudong Lu, Xiaoya Lu, Zhenghao Lu, Qitan Lv, Caoyuan Ma, Jiachen Ma, Xiaoya Ma, Zhongtian Ma, Lingyu Meng, Ziqi Miao, Yazhe Niu, Yuezhang Peng, Yuan Pu, Han Qi, Chen Qian, Xingge Qiao, Jingjing Qu, Jiashu Qu, Wanying Qu, Wenwen Qu, Xiaoye Qu, Qihan Ren, Qingnan Ren, Qingyu Ren, Jing Shao, Wenqi Shao, Shuai Shao, Dongxing Shi, Xin Song, Xinhao Song, Yan Teng, Xuan Tong, Yingchun Wang, Xuhong Wang, Shujie Wang, Xin Wang, Yige Wang, Yixu Wang, Yuanfu Wang, Futing Wang, Ruofan Wang, Wenjie Wang, Yajie Wang, Muhao Wei, Xiaoyu Wen, Fenghua Weng, Yuqi Wu, Yingtong Xiong, Xingcheng Xu, Chao Yang, Yue Yang, Yang Yao, Yulei Ye, Zhenyun Yin, Yi Yu, Bo Zhang, Qiaosheng Zhang, Jinxuan Zhang, Yexin Zhang, Yinqiang Zheng, Hefeng Zhou, Zhanhui Zhou, Pengyu Zhu, Qingzi Zhu, Yubo Zhu, Bowen Zhou,
- Abstract summary: We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety.<n>It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training.<n>We further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B.
- Score: 91.33824439029533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
Related papers
- SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
arXiv Detail & Related papers (2025-05-22T03:46:03Z) - A Framework for Benchmarking and Aligning Task-Planning Safety in LLM-Based Embodied Agents [13.225168384790257]
Large Language Models (LLMs) exhibit substantial promise in enhancing task-planning capabilities within embodied agents.<n>We present Safe-BeAl, an integrated framework for the measurement (SafePlan-Bench) and alignment (Safe-Align) of LLM-based embodied agents' behaviors.<n>Our empirical analysis reveals that even in the absence of adversarial inputs or malicious intent, LLM-based agents can exhibit unsafe behaviors.
arXiv Detail & Related papers (2025-04-20T15:12:14Z) - Safe RLHF-V: Safe Reinforcement Learning from Multi-modal Human Feedback [34.01716144973483]
Multimodal large language models (MLLMs) are essential for building general-purpose AI assistants.<n>How can we ensure safety alignment of MLLMs to prevent undesired behaviors?<n>In this work, we present the first exploration of the Safe RLHF-V -- the first multimodal safety alignment framework.
arXiv Detail & Related papers (2025-03-22T07:40:20Z) - The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1 [70.94607997570729]
We present a comprehensive safety assessment of OpenAI-o3 and DeepSeek-R1 reasoning models.<n>We investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications.
arXiv Detail & Related papers (2025-02-18T09:06:07Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.<n>Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.<n>Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - OpenAI o1 System Card [274.83891368890977]
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought.<n>This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
arXiv Detail & Related papers (2024-12-21T18:04:31Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
This survey presents a framework for safety research pertaining to large models.
We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models.
We explore the strategies for enhancing large model safety from training to deployment.
arXiv Detail & Related papers (2023-02-18T09:32:55Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.