論文の概要: LEANN: A Low-Storage Vector Index
- arxiv url: http://arxiv.org/abs/2506.08276v1
- Date: Mon, 09 Jun 2025 22:43:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:40.86214
- Title: LEANN: A Low-Storage Vector Index
- Title(参考訳): LEANN: 低ストレージベクトルインデックス
- Authors: Yichuan Wang, Shu Liu, Zhifei Li, Yongji Wu, Ziming Mao, Yilong Zhao, Xiao Yan, Zhiying Xu, Yang Zhou, Ion Stoica, Sewon Min, Matei Zaharia, Joseph E. Gonzalez,
- Abstract要約: LEANNは、リソース制約されたパーソナルデバイスに最適化された、ストレージ効率の近い近接検索インデックスである。
評価の結果,LEANNは原データの5%以下までインデックスサイズを縮小し,標準インデックスの最大50倍のストレージを実現した。
- 参考スコア(独自算出の注目度): 70.13770593890655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedding-based search is widely used in applications such as recommendation and retrieval-augmented generation (RAG). Recently, there is a growing demand to support these capabilities over personal data stored locally on devices. However, maintaining the necessary data structure associated with the embedding-based search is often infeasible due to its high storage overhead. For example, indexing 100 GB of raw data requires 150 to 700 GB of storage, making local deployment impractical. Reducing this overhead while maintaining search quality and latency becomes a critical challenge. In this paper, we present LEANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LEANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval with minimal storage overhead. Our evaluation shows that LEANN reduces index size to under 5% of the original raw data, achieving up to 50 times smaller storage than standard indexes, while maintaining 90% top-3 recall in under 2 seconds on real-world question answering benchmarks.
- Abstract(参考訳): 埋め込みベースの検索は、レコメンデーションや検索強化生成(RAG)といったアプリケーションで広く使われている。
近年、デバイスにローカルに保存された個人データよりも、これらの機能をサポートする必要性が高まっている。
しかし,ストレージのオーバーヘッドが大きいため,組込み検索に伴うデータ構造を維持することは不可能であることが多い。
例えば、100GBの生データのインデックス付けには150から700GBのストレージが必要で、ローカルなデプロイメントは現実的ではない。
検索の質とレイテンシを保ちながら、このオーバーヘッドを減らすことは、非常に難しい課題だ。
本稿では,資源制約されたパーソナルデバイスに最適化された,ストレージ効率の良いニアニア(ANN)検索インデックスであるLEANNを提案する。
LEANNは、コンパクトなグラフベースの構造と効率的なオンザフライ再計算戦略を組み合わせることで、ストレージオーバーヘッドを最小限に抑えた高速かつ正確な検索を可能にする。
評価の結果,LEANNは,実世界の質問応答ベンチマークでは2秒未満で,インデックスサイズを5%以下に減らし,標準インデックスの最大50倍のストレージを実現し,トップ3リコールの90%を2秒以内で維持できることがわかった。
関連論文リスト
- HAKES: Scalable Vector Database for Embedding Search Service [16.034584281180006]
我々は,並列な読み書きワークロード下で高いスループットと高いリコールを実現するベクトルデータベースを構築した。
我々のインデックスは、高リコール領域と同時読み書きワークロード下でインデックスベースラインより優れています。
nameysはスケーラブルで、ベースラインよりも最大16タイムで高いスループットを実現します。
論文 参考訳(メタデータ) (2025-05-18T19:26:29Z) - Efficient Long Context Language Model Retrieval with Compression [57.09163579304332]
情報検索のための新しいパラダイムとしてLong Context Language Models (LCLM)が登場した。
本稿では,LCLM検索に適した新しい圧縮手法を提案する。
また,CoLoRはテキスト内サイズを1.91倍に圧縮し,検索性能を6%向上することを示した。
論文 参考訳(メタデータ) (2024-12-24T07:30:55Z) - Semi-Parametric Retrieval via Binary Bag-of-Tokens Index [71.78109794895065]
SemI-parametric Disentangled Retrieval (SiDR)は、ニューラルパラメータから検索インデックスを分離するバイエンコーダ検索フレームワークである。
SiDRは、検索のための非パラメトリックトークン化インデックスをサポートし、BM25のようなインデックス化の複雑さを著しく改善した。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - AiSAQ: All-in-Storage ANNS with Product Quantization for DRAM-free Information Retrieval [1.099532646524593]
本稿では、圧縮ベクトルをSSDインデックスにオフロードするAiSAQ(All-in-Storage ANNS with Product Quantization)を提案する。
本手法は,10 MB のメモリ使用率を数十億のデータセットによるクエリ検索で実現し,遅延の致命的な劣化を伴わない。
論文 参考訳(メタデータ) (2024-04-09T04:20:27Z) - Injecting Domain Adaptation with Learning-to-hash for Effective and
Efficient Zero-shot Dense Retrieval [49.98615945702959]
我々は,TAS-B高密度検索器の下流ゼロショット検索精度を向上させるためのLTHおよびベクトル圧縮技術を評価する。
以上の結果から, 従来の研究とは異なり, LTH法はゼロショットTAS-B高密度レトリバーを平均14%のnDCG@10で過小評価できることがわかった。
論文 参考訳(メタデータ) (2022-05-23T17:53:44Z) - Memory-Efficient Hierarchical Neural Architecture Search for Image
Restoration [68.6505473346005]
メモリ効率の高い階層型NAS HiNAS(HiNAS)を提案する。
単一の GTX1080Ti GPU では、BSD 500 でネットワークを消すのに約 1 時間、DIV2K で超解像構造を探すのに 3.5 時間しかかかりません。
論文 参考訳(メタデータ) (2020-12-24T12:06:17Z) - The Case for Learned Spatial Indexes [62.88514422115702]
我々は、空間範囲の問合せに答えるために、最先端の学習した多次元インデックス構造(すなわちFlood)から提案した手法を用いる。
i) パーティション内の機械学習検索は、1次元でフィルタリングを使用する場合の2進探索よりも11.79%速く、39.51%高速であることを示す。
また、2次元でフィルタする最も近い競合相手の1.23倍から1.83倍の速さで機械学習インデックスを精査する。
論文 参考訳(メタデータ) (2020-08-24T12:09:55Z) - Hands-off Model Integration in Spatial Index Structures [8.710716183434918]
本稿では,軽量機械学習モデルを用いて空間インデックスのクエリを高速化する機会について検討する。
我々は、R木において、おそらく最も広く使われている空間指標である、それと類似した手法を使うことの可能性を探ることによって、そうする。
分析で示すように、クエリの実行時間を最大60%削減でき、同時にインデックスのメモリフットプリントを90%以上削減できる。
論文 参考訳(メタデータ) (2020-06-29T22:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。