Correcting a noisy quantum computer using a quantum computer
- URL: http://arxiv.org/abs/2506.08331v1
- Date: Tue, 10 Jun 2025 01:35:21 GMT
- Title: Correcting a noisy quantum computer using a quantum computer
- Authors: Pan Zhang,
- Abstract summary: We propose a decoding scheme that leverages the operations of the quantum circuit itself.<n>The trained quantum circuit $B$ can be deployed on quantum devices, such as superconducting qubits.<n>This insight paves the way for the development of self-correcting quantum computers.
- Score: 8.504296937226993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers require error correction to achieve universal quantum computing. However, current decoding of quantum error-correcting codes relies on classical computation, which is slower than quantum operations in superconducting qubits. This discrepancy makes the practical implementation of real-time quantum error correction challenging. In this work, we propose a decoding scheme that leverages the operations of the quantum circuit itself. Given a noisy quantum circuit $A$, we train a decoding quantum circuit $B$ using syndrome measurements to identify the logical operators needed to correct errors in circuit $A$. The trained quantum circuit $B$ can be deployed on quantum devices, such as superconducting qubits, to perform real-time decoding and error correction. Our approach is applicable to general quantum codes with multiple logical qubits and operates efficiently under various noise conditions, and the decoding speed matches the speed of the quantum circuits being corrected. We have conducted numerical experiments using surface codes up to distance 7 under circuit-level noise, demonstrating performance on par with the classical minimum-weight perfect matching algorithm. Interestingly, our method reveals that the traditionally classical task of decoding error-correcting codes can be accomplished without classical devices or measurements. This insight paves the way for the development of self-correcting quantum computers.
Related papers
- Quantum Error Correction near the Coding Theoretical Bound [0.0]
We present quantum error-correcting codes constructed from classical LDPC codes.<n>These codes approach the hashing bound while maintaining linear computational complexity in the number of physical qubits.<n>This result establishes a pathway toward realizing large-scale, fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-12-30T18:48:54Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.<n>Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Circuits for Stabilizer Error Correcting Codes: A Tutorial [11.637855523244838]
This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes.
We present encoding and decoding circuits for five-qubit code and Steane code, along with verification of these circuits using IBM Qiskit.
arXiv Detail & Related papers (2023-09-21T05:42:04Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Automated error correction in superdense coding, with implementation on
superconducting quantum computer [0.28675177318965034]
We present a task-specific error-correction technique that provides a complete protection over a restricted set of quantum states.
Specifically, we give an automated error correction in Superdense Coding algorithms utilizing n-qubit generalized Bell states.
We experimentally realize our automated error correction technique for three different types of superdense coding algorithm on a 7-qubit superconducting IBM quantum computer and also on a 27-qubit quantum simulator in the presence of noise.
arXiv Detail & Related papers (2022-10-27T04:02:13Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Mitigating errors by quantum verification and post-selection [0.0]
We present a technique for quantum error mitigation based on quantum verification, the so-called accreditation protocol, together with post-selection.
We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise.
Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol.
arXiv Detail & Related papers (2021-09-29T10:29:39Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.