Reinforcement Fine-Tuning for Reasoning towards Multi-Step Multi-Source Search in Large Language Models
- URL: http://arxiv.org/abs/2506.08352v1
- Date: Tue, 10 Jun 2025 02:09:57 GMT
- Title: Reinforcement Fine-Tuning for Reasoning towards Multi-Step Multi-Source Search in Large Language Models
- Authors: Wentao Shi, Yiqing Shen,
- Abstract summary: Reasoning-Search (R-Search) is a single-LLM search framework that unifies multi-step planning, multi-source search execution, and answer synthesis.<n>R-Search structure the output into four explicitly defined components, including reasoning steps that guide the search process.
- Score: 7.719379471690927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can face factual limitations when responding to time-sensitive queries about recent events that arise after their knowledge thresholds in the training corpus. Existing search-augmented approaches fall into two categories, each with distinct limitations: multi-agent search frameworks incur substantial computational overhead by separating search planning and response synthesis across multiple LLMs, while single-LLM tool-calling methods restrict themselves to sequential planned, single-query searches from sole search sources. We present Reasoning-Search (R-Search), a single-LLM search framework that unifies multi-step planning, multi-source search execution, and answer synthesis within one coherent inference process. Innovatively, it structure the output into four explicitly defined components, including reasoning steps that guide the search process (<think>), a natural-language directed acyclic graph that represents the search plans with respect to diverse sources (<search>), retrieved results from executing the search plans (<result>), and synthesized final answers (<answer>). To enable effective generation of these structured outputs, we propose a specialized Reinforcement Fine-Tuning (ReFT) method based on GRPO, together with a multi-component reward function that optimizes LLM's answer correctness, structural validity of the generated DAG, and adherence to the defined output format. Experimental evaluation on FinSearchBench-24, SearchExpertBench-25, and seven Q and A benchmarks demonstrates that R-Search outperforms state-of-the-art methods, while achieving substantial efficiency gains through 70% reduction in context token usage and approximately 50% decrease in execution latency. Code is available at https://github.com/wentao0429/Reasoning-search.
Related papers
- Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
We present a new benchmark for evaluating a form of retrieval-augmented generation (RAG)<n>RAG requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources.<n>We build it using a synthetic data pipeline that simulates business across product planning, development, and support stages.
arXiv Detail & Related papers (2025-06-29T08:34:59Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - R-Search: Empowering LLM Reasoning with Search via Multi-Reward Reinforcement Learning [0.8388591755871735]
R-Search is a reinforcement learning framework for Reasoning-Search integration.<n>It guides large language models to autonomously execute multi-step reasoning with deep search interaction.<n>R-Search learns optimal reasoning search interaction trajectories via multi-reward signals.
arXiv Detail & Related papers (2025-06-04T17:29:22Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Enhancing LLMs' Reasoning-Intensive Multimedia Search Capabilities through Fine-Tuning and Reinforcement Learning [6.327006563699527]
We introduce SearchExpert, a training method for large language models (LLMs) driven search agents.<n>We reformulate the search plan in an efficient natural language representation to reduce token consumption.<n>To improve reasoning-intensive search capabilities, we propose the reinforcement learning from search feedback.
arXiv Detail & Related papers (2025-05-24T19:00:36Z) - Reinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts [67.67746334493302]
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet they often rely on external context to handle complex tasks.<n>We propose a tri-encoder sequential retriever that models this process as a Markov Decision Process (MDP)<n>We show that our method consistently and significantly outperforms baselines, underscoring the importance of explicitly modeling inter-example dependencies.
arXiv Detail & Related papers (2025-04-15T17:35:56Z) - Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning [50.419872452397684]
Search-R1 is an extension of reinforcement learning for reasoning frameworks.<n>It generates search queries during step-by-step reasoning with real-time retrieval.<n>It improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines.
arXiv Detail & Related papers (2025-03-12T16:26:39Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.<n>We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.