Text Embeddings Should Capture Implicit Semantics, Not Just Surface Meaning
- URL: http://arxiv.org/abs/2506.08354v1
- Date: Tue, 10 Jun 2025 02:11:42 GMT
- Title: Text Embeddings Should Capture Implicit Semantics, Not Just Surface Meaning
- Authors: Yiqun Sun, Qiang Huang, Anthony K. H. Tung, Jun Yu,
- Abstract summary: We argue that the text embedding research community should move beyond surface meaning and embrace implicit semantics as a central modeling goal.<n>Current embedding models are typically trained on data that lacks such depth and evaluated on benchmarks that reward the capture of surface meaning.<n>Our pilot study highlights this gap, showing that even state-of-the-art models perform only marginally better than simplistic baselines on implicit semantics tasks.
- Score: 17.00358234728804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This position paper argues that the text embedding research community should move beyond surface meaning and embrace implicit semantics as a central modeling goal. Text embedding models have become foundational in modern NLP, powering a wide range of applications and drawing increasing research attention. Yet, much of this progress remains narrowly focused on surface-level semantics. In contrast, linguistic theory emphasizes that meaning is often implicit, shaped by pragmatics, speaker intent, and sociocultural context. Current embedding models are typically trained on data that lacks such depth and evaluated on benchmarks that reward the capture of surface meaning. As a result, they struggle with tasks requiring interpretive reasoning, speaker stance, or social meaning. Our pilot study highlights this gap, showing that even state-of-the-art models perform only marginally better than simplistic baselines on implicit semantics tasks. To address this, we call for a paradigm shift: embedding research should prioritize more diverse and linguistically grounded training data, design benchmarks that evaluate deeper semantic understanding, and explicitly frame implicit meaning as a core modeling objective, better aligning embeddings with real-world language complexity.
Related papers
- Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics [50.982315553104975]
We investigate the bottom-up evolution of lexical semantics for a popular large language model, namely Llama2.
Our experiments show that the representations in lower layers encode lexical semantics, while the higher layers, with weaker semantic induction, are responsible for prediction.
This is in contrast to models with discriminative objectives, such as mask language modeling, where the higher layers obtain better lexical semantics.
arXiv Detail & Related papers (2024-03-03T13:14:47Z) - Integrating Self-supervised Speech Model with Pseudo Word-level Targets
from Visually-grounded Speech Model [57.78191634042409]
We propose Pseudo-Word HuBERT (PW-HuBERT), a framework that integrates pseudo word-level targets into the training process.
Our experimental results on four spoken language understanding (SLU) benchmarks suggest the superiority of our model in capturing semantic information.
arXiv Detail & Related papers (2024-02-08T16:55:21Z) - A Joint Study of Phrase Grounding and Task Performance in Vision and Language Models [28.746370086515977]
Key to tasks that require reasoning about natural language in visual contexts is grounding words and phrases to image regions.
We propose a framework to jointly study task performance and phrase grounding.
We show how this can be addressed through brute-force training on ground phrasing annotations.
arXiv Detail & Related papers (2023-09-06T03:54:57Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - Disentangling Learnable and Memorizable Data via Contrastive Learning
for Semantic Communications [81.10703519117465]
A novel machine reasoning framework is proposed to disentangle source data so as to make it semantic-ready.
In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data.
Deep semantic clusters of highest confidence are considered learnable, semantic-rich data.
Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism.
arXiv Detail & Related papers (2022-12-18T12:00:12Z) - Context vs Target Word: Quantifying Biases in Lexical Semantic Datasets [18.754562380068815]
State-of-the-art contextualized models such as BERT use tasks such as WiC and WSD to evaluate their word-in-context representations.
This study presents the first quantitative analysis (using probing baselines) on the context-word interaction being tested in major contextual lexical semantic tasks.
arXiv Detail & Related papers (2021-12-13T15:37:05Z) - The Rediscovery Hypothesis: Language Models Need to Meet Linguistics [8.293055016429863]
We study whether linguistic knowledge is a necessary condition for good performance of modern language models.
We show that language models that are significantly compressed but perform well on their pretraining objectives retain good scores when probed for linguistic structures.
This result supports the rediscovery hypothesis and leads to the second contribution of our paper: an information-theoretic framework that relates language modeling objective with linguistic information.
arXiv Detail & Related papers (2021-03-02T15:57:39Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Distributional semantic modeling: a revised technique to train term/word
vector space models applying the ontology-related approach [36.248702416150124]
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings)
Vec2graph is a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs.
arXiv Detail & Related papers (2020-03-06T18:27:39Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.