On Reasoning Strength Planning in Large Reasoning Models
- URL: http://arxiv.org/abs/2506.08390v1
- Date: Tue, 10 Jun 2025 02:55:13 GMT
- Title: On Reasoning Strength Planning in Large Reasoning Models
- Authors: Leheng Sheng, An Zhang, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang, Tat-Seng Chua,
- Abstract summary: We find evidence that LRMs pre-plan the reasoning strengths in their activations even before generation.<n>We then uncover that LRMs encode this reasoning strength through a pre-allocated directional vector embedded in the activations of the model.<n>Our work provides new insights into the internal mechanisms of reasoning in LRMs and offers practical tools for controlling their reasoning behaviors.
- Score: 50.61816666920207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies empirically reveal that large reasoning models (LRMs) can automatically allocate more reasoning strengths (i.e., the number of reasoning tokens) for harder problems, exhibiting difficulty-awareness for better task performance. While this automatic reasoning strength allocation phenomenon has been widely observed, its underlying mechanism remains largely unexplored. To this end, we provide explanations for this phenomenon from the perspective of model activations. We find evidence that LRMs pre-plan the reasoning strengths in their activations even before generation, with this reasoning strength causally controlled by the magnitude of a pre-allocated directional vector. Specifically, we show that the number of reasoning tokens is predictable solely based on the question activations using linear probes, indicating that LRMs estimate the required reasoning strength in advance. We then uncover that LRMs encode this reasoning strength through a pre-allocated directional vector embedded in the activations of the model, where the vector's magnitude modulates the reasoning strength. Subtracting this vector can lead to reduced reasoning token number and performance, while adding this vector can lead to increased reasoning token number and even improved performance. We further reveal that this direction vector consistently yields positive reasoning length prediction, and it modifies the logits of end-of-reasoning token </think> to affect the reasoning length. Finally, we demonstrate two potential applications of our findings: overthinking behavior detection and enabling efficient reasoning on simple problems. Our work provides new insights into the internal mechanisms of reasoning in LRMs and offers practical tools for controlling their reasoning behaviors. Our code is available at https://github.com/AlphaLab-USTC/LRM-plans-CoT.
Related papers
- BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit [12.189197763012409]
Large language models (LRMs) have emerged as a significant advancement in artificial intelligence.<n>In this paper, we identify an unexplored attack vector against LRMs, which we term "overthinking tunables"<n>We propose a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity.
arXiv Detail & Related papers (2025-07-24T11:24:35Z) - Does More Inference-Time Compute Really Help Robustness? [50.47666612618054]
We show that small-scale, open-source models can benefit from inference-time scaling.<n>We identify an important security risk, intuitively motivated and empirically verified as an inverse scaling law.<n>We urge practitioners to carefully weigh these subtle trade-offs before applying inference-time scaling in security-sensitive, real-world applications.
arXiv Detail & Related papers (2025-07-21T18:08:38Z) - Lost at the Beginning of Reasoning [82.18834329384514]
We show that the first reasoning step exerts a disproportionately large influence on the final prediction.<n>We propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps.<n>We introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities.
arXiv Detail & Related papers (2025-06-27T09:53:57Z) - Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs [8.359909829007005]
We investigate whether efficient reasoning strategies introduce behavioral inconsistencies in large reasoning models (LRMs)<n>$ICBENCH$ is a benchmark designed to measure inconsistency in LRMs across three dimensions.<n>We find that while larger models generally exhibit greater consistency than smaller ones, they all display widespread "scheming" behaviors.
arXiv Detail & Related papers (2025-06-24T10:25:28Z) - Think Clearly: Improving Reasoning via Redundant Token Pruning [57.01254508252785]
We show that deliberately removing redundancy in the reasoning process significantly improves performance.<n>We demonstrate that our method significantly improves overall accuracy across reasoning-intensive benchmarks without any training.
arXiv Detail & Related papers (2025-06-17T06:04:01Z) - Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning [33.040747962183076]
Large reasoning models (LRMs) have demonstrated impressive capabilities in complex problem-solving, yet their internal reasoning mechanisms remain poorly understood.<n>We observe an interesting MI peaks phenomenon: the MI at specific generative steps exhibits a sudden and significant increase during LRM's reasoning process.<n>We then demonstrate that these thinking tokens are crucial for LRM's reasoning performance, while other tokens has minimal impacts.
arXiv Detail & Related papers (2025-06-03T13:31:10Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models [86.88657425848547]
Large reasoning models (LRMs) already possess a latent capacity for long chain-of-thought reasoning.<n>We explicitly align models with three meta-abilities: deduction, induction, and abduction, using automatically generated, self-verifiable tasks.<n>Our three stage-pipeline individual alignment, parameter-space merging, and domain-specific reinforcement learning, boosts performance by over 10% relative to instruction-tuned baselines.
arXiv Detail & Related papers (2025-05-15T17:58:33Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.<n>We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.<n>Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - Process or Result? Manipulated Ending Tokens Can Mislead Reasoning LLMs to Ignore the Correct Reasoning Steps [39.759594479826454]
We explore how vulnerable are reasoning models to subtle errors in their input reasoning chains.<n>We introduce "Compromising Thought" (CPT), a vulnerability where models presented with reasoning tokens containing manipulated calculation results tend to ignore correct reasoning steps and adopt incorrect results instead.<n>Our work enhances understanding of reasoning robustness and highlights security considerations for reasoning-intensive applications.
arXiv Detail & Related papers (2025-03-25T03:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.