BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit
- URL: http://arxiv.org/abs/2507.18305v1
- Date: Thu, 24 Jul 2025 11:24:35 GMT
- Title: BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit
- Authors: Biao Yi, Zekun Fei, Jianing Geng, Tong Li, Lihai Nie, Zheli Liu, Yiming Li,
- Abstract summary: Large language models (LRMs) have emerged as a significant advancement in artificial intelligence.<n>In this paper, we identify an unexplored attack vector against LRMs, which we term "overthinking tunables"<n>We propose a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity.
- Score: 12.189197763012409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large reasoning models (LRMs) have emerged as a significant advancement in artificial intelligence, representing a specialized class of large language models (LLMs) designed to tackle complex reasoning tasks. The defining characteristic of LRMs lies in their extensive chain-of-thought (CoT) reasoning capabilities. In this paper, we identify a previously unexplored attack vector against LRMs, which we term "overthinking backdoors". We advance this concept by proposing a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity. Our attack is implemented through a novel data poisoning methodology. It pairs a tunable trigger-where the number of repetitions signals the desired intensity-with a correspondingly verbose CoT response. These responses are programmatically generated by instructing a teacher LLM to inject a controlled number of redundant refinement steps into a correct reasoning process. The approach preserves output correctness, which ensures stealth and establishes the attack as a pure resource-consumption vector. Extensive empirical results on various LRMs demonstrate that our method can reliably trigger a controllable, multi-fold increase in the length of the reasoning process, without degrading the final answer's correctness. Our source code is available at https://github.com/FZaKK/BadReasoner.
Related papers
- ExtendAttack: Attacking Servers of LRMs via Extending Reasoning [27.205747119390846]
Large Reasoning Models (LRMs) have demonstrated promising performance in complex tasks.<n>We propose a novel attack method on LRMs termed ExtendAttack to maliciously occupy the resources of servers.<n>We show that ExtendAttack increases the length of the model's response by over 2.5 times for the o3 model on the HumanEval benchmark.
arXiv Detail & Related papers (2025-06-16T17:49:05Z) - On Reasoning Strength Planning in Large Reasoning Models [50.61816666920207]
We find evidence that LRMs pre-plan the reasoning strengths in their activations even before generation.<n>We then uncover that LRMs encode this reasoning strength through a pre-allocated directional vector embedded in the activations of the model.<n>Our work provides new insights into the internal mechanisms of reasoning in LRMs and offers practical tools for controlling their reasoning behaviors.
arXiv Detail & Related papers (2025-06-10T02:55:13Z) - What makes Reasoning Models Different? Follow the Reasoning Leader for Efficient Decoding [84.42056293290015]
We analyze the token-level misalignment between reasoning and non-reasoning models.<n>Motivated by the Local Misalignment Diminish, we propose FoReaL-Decoding.<n>On four popular math-reasoning benchmarks, FoReaL-Decoding reduces theoretical FLOPs by 30 to 50% and trims CoT length by up to 40%.
arXiv Detail & Related papers (2025-06-08T05:08:32Z) - Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models [50.4652276723694]
Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities.<n>Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%.
arXiv Detail & Related papers (2025-05-22T05:56:11Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.<n>We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.<n>Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - To Think or Not to Think: Exploring the Unthinking Vulnerability in Large Reasoning Models [56.19026073319406]
Large Reasoning Models (LRMs) are designed to solve complex tasks by generating explicit reasoning traces before producing final answers.<n>We reveal a critical vulnerability in LRMs -- termed Unthinking -- wherein the thinking process can be bypassed by manipulating special tokens.<n>In this paper, we investigate this vulnerability from both malicious and beneficial perspectives.
arXiv Detail & Related papers (2025-02-16T10:45:56Z) - Transferring Backdoors between Large Language Models by Knowledge Distillation [2.9138150728729064]
Backdoor Attacks have been a serious vulnerability against Large Language Models (LLMs)
Previous methods only reveal such risk in specific models, or present tasks transferability after attacking the pre-trained phase.
We propose ATBA, an adaptive transferable backdoor attack, which can effectively distill the backdoor of teacher LLMs into small models.
arXiv Detail & Related papers (2024-08-19T10:39:45Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.