SECOND: Mitigating Perceptual Hallucination in Vision-Language Models via Selective and Contrastive Decoding
- URL: http://arxiv.org/abs/2506.08391v1
- Date: Tue, 10 Jun 2025 02:55:38 GMT
- Title: SECOND: Mitigating Perceptual Hallucination in Vision-Language Models via Selective and Contrastive Decoding
- Authors: Woohyeon Park, Woojin Kim, Jaeik Kim, Jaeyoung Do,
- Abstract summary: SECOND: Selective and Contrastive Decoding is a novel approach that enables Vision-Language Models to leverage multi-scale visual information with an object-centric manner.<n> SECOND significantly reduces perceptual hallucinations and outperforms a wide range of benchmarks.
- Score: 5.976839106353883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant advancements in Vision-Language Models (VLMs), the performance of existing VLMs remains hindered by object hallucination, a critical challenge to achieving accurate visual understanding. To address this issue, we propose SECOND: Selective and Contrastive Decoding, a novel approach that enables VLMs to effectively leverage multi-scale visual information with an object-centric manner, closely aligning with human visual perception. SECOND progressively selects and integrates multi-scale visual information, facilitating a more precise interpretation of images. By contrasting these visual information iteratively, SECOND significantly reduces perceptual hallucinations and outperforms a wide range of benchmarks. Our theoretical analysis and experiments highlight the largely unexplored potential of multi-scale application in VLMs, showing that prioritizing and contrasting across scales outperforms existing methods.
Related papers
- ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs [98.27348724529257]
We introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions.<n>Models trained with the ViCrit Task exhibit substantial gains across a variety of vision-language models benchmarks.
arXiv Detail & Related papers (2025-06-11T19:16:54Z) - Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains [31.828341309787042]
Vision-language models (VLMs) achieve remarkable success in single-image tasks.<n>Real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline.<n>We propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs'perception, comprehension, and reasoning abilities in multi-image scenarios.
arXiv Detail & Related papers (2025-04-28T19:02:18Z) - PAINT: Paying Attention to INformed Tokens to Mitigate Hallucination in Large Vision-Language Model [0.0]
hallucinations often arise from the progressive weakening of attention weight to visual tokens.<n>textbfPAINT (textbfPaying textbfAttention to textbfINformed textbfTokens) is a plug-and-play framework that intervenes in the self-attention mechanism of the Large Vision Language Models.
arXiv Detail & Related papers (2025-01-21T15:22:31Z) - Beyond Sight: Towards Cognitive Alignment in LVLM via Enriched Visual Knowledge [24.538839144639653]
Large Vision-Language Models (LVLMs) integrate separately pre-trained vision and language components.
These models frequently encounter a core issue of "cognitive misalignment" between the vision encoder (VE) and the large language model (LLM)
arXiv Detail & Related papers (2024-11-25T18:33:14Z) - ICT: Image-Object Cross-Level Trusted Intervention for Mitigating Object Hallucination in Large Vision-Language Models [32.24716280370563]
ICT is a lightweight, training-free method that calculates an intervention direction to shift the model's focus towards different levels of visual information.
It achieves strong performance with a small amount of data and generalizes well across different datasets and models.
arXiv Detail & Related papers (2024-11-22T12:22:21Z) - CATCH: Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs [74.36850397755572]
CATCH addresses issues related to visual defects that cause diminished fine-grained feature perception and cumulative hallucinations in open-ended scenarios.
It is applicable to various visual question-answering tasks without requiring any specific data or prior knowledge, and generalizes robustly to new tasks without additional training.
arXiv Detail & Related papers (2024-11-19T18:27:31Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
Vision-and-language (V-L) tasks require the system to understand both vision content and natural language.
We propose DiMBERT (short for Disentangled Multimodal-Attention BERT), which applies separated attention spaces for vision and language.
We show that DiMBERT sets new state-of-the-art performance on three tasks.
arXiv Detail & Related papers (2022-10-28T23:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.